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LEARNING IN THE TEMPORAL DIMENSION

Hamilton Equations of Lifelong Learning

No Institute Given

Abstract. This papers gives foundations of lifelong learning in the frame-
work of Bellman’s principle of dynamic programming. The exploration
of optimality naturally leads to the conception of a more general game
theory framework which properly controls the mechanisms of focus of at-
tention. We show that there exist optimal lifelong learning computational
models at the light of the proposed focus game, where the environmen-
tal information is properly filtered to produce an internal representation
that is suitable for the learning agent.

1 Introduction

2 Dynamic programming

Many significant lifelong learning problems can be formulated by the dynamical
system

ẋ(t) = f(x(t), w(t), t), (1)

on the horizon [0, T ], where x 2 X ⇢ Rn. Its generality makes it suitable for
describing laws of nature for participles as well as for the activations of neurons.
The system is often paired with the objective functional

J[0,T ](w) = JT +

Z
T

0
dt L(x(t), w(t), t), (2)

where w : [0, T ] ! Rm is a control function whose purpose is to achieve important
properties of J , like its minimum or, whenever possible, its stationarity. While
Eq. (1) and Eq. (2) express a very general explicit dependence on t, the primary
interest in this paper is for the case in which f(x(t), w(t), t) = f(x(t), w(t), u(t))
where u : [0, T ] ! Rm is the external input. The explicit presence of JT < 1
indicates explicitly that 0 < J[0,T ](w) < 1. Basically, we want to solve

w
? = arg min

w

J[0,T ](w). (3)

This problem is somewhat in between classic optical control and di↵erential
games[1]. In optimal control, the explicit dependence on t is mostly regarded as
a stochastic process, whereas in di↵erential games w and u are regarded as the
actions of two players the task of which is that of minimizing and maximizing J ,
respectively. We will also consider the case in which we remove the lower bound
on J and consider its stationarity, which in fact we will show to include classic
mechanics.
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0
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APPENDIX

A HJB equations

Let us consider14 of the Value Function V : [0, T ] ⇥ X ! R : (t, ⇠) 7! V (t, x)

V (t, x) := JT + min
w

Z
T

t

ds L(⇠(s), w(s), s). (120)

Here, ⇠(s) is the trajectory in [t, T ] driven by

⇠̇(s) = f(⇠(s), w(s), s) (121)

which begins with ⇠(t) = x. Function V is sometimes also referred to as the
cost-to-go. Here JT � 0 is the final value that might be regarded as

JT =

Z 1

T

ds L(⇠(s), w(s), s).

Basically, the introduction of JT leads to consider the special case in which
T = 1 when there exists the integral V (t, x) := minw

R 1
t

ds L(⇠(s), w(s), s).
We begin with a couple of premises on (f, L) that are very important in the
following.

– The mentioned case of Mechanics is a classic example in which the action,
in general, does not admit minimum.

– Function f and L are supposed to be continuous and di↵erentiable with re-
spect to x, w whereas we make no assumption on the continuity with respect
to t.

The optimum is determined by using Bellman’s principle. Given �t > 0, we
want to see the relationship between the value function at t and at t+�t, where
the optimal value on the trajectory x

? is correspondently moved to x
? + �x

?.
We have

V (t, x?)= min
w([t,T ])

✓
V (t + �t, x + �x) +

Z
t+�t

t

ds L(x(s), w(s), s),

◆

and look for the control policy w
?([0, T ]) over [0, T ]. If we apply Bellman’s prin-

ciple we get

V (t, x?)= V (t + �t, x
? + �x

?) + min
w([t,t+�t])

L(x(t), w(t), t)�t + o(�t)

= V (t, x?) + Vs(t, x
?)�t + Vx(t, x

?)�x
? + o(�x

?) + o(�t)

+ min
w([t,t+�t])

L(x(t), w(t), t)�t,

14 In this paper we overload the notation by using a symbol like x to denote a variable
as well as the corresponding function which return it at time t.
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VALUE FUNCTION
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where x
? = x(t). On the optimal trajectory we have �x

? = f(x?
, w

?
, t)�t +

o(�t), where w
? = arg minw V (t, x?). Hence, the previous equation can be re-

written as

o(�t) = Vx(t, x
?)·f(x?

, w
?
, t)�t + Vs(t, x

?(t))�t + min
w([t,t+�t])

L(x(t), w(t), t)�t

Now, as �t ! 0 we have minw([t,t+�t])  minw(t). Let ! := w(t). Then we get

Vs(t, x
?) = � min

!

✓
L(x?

, !, t) + Vx(t, x
?) · f(x?

, !, t)

◆
. (122)

From this analysis, we are now ready to state the following theorem.

Theorem 14. Suppose we are given the optimization problem on the value func-
tion defined by eq. (120) with the terminal boundary condition 8x 2 Rn : V (T, x) =
g(x). If we define15

H(x, p, s) := min
!

�
L(x, !, s) + p · f(x, !, s)

�
, (123)

then any optimal trajectory satisfies the Hamilton-Jacobi-Bellman (HJB) equa-
tions

Vs(t, x
?) + H(x?

, Vx(t, x
?), t) = 0. (124)

The previous discussion on the adoption of the Bellman’s principle holds for any
x 2 Rn at time T . When considering that H is defined by Eq. (123), the above
equation is a partial di↵erential equation

Vs(t, x) + H(x, Vx, t) = 0

on V (t, x) which can be solved under the respect of the terminal condition
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satisfy the Hamiltonian invariance expressed by the Poisson’s brackets H(x(t), p(t)) =
{H, H} = 0. We have that the null total derivative

d

dt
H(x(t), p(t)) = Hx(x(t), p(t)) · ẋ(t) + Hp(x(t), p(t)) · ṗ(t) = 0

holds for all t 2 (0, T ), which leads to conclude that H(x(t), p(t)) ⌘ 0 in the
interval. In the following we want to see if this fundamental property holds also
in the case in which the Hamiltonian is time-dependent. We will address this
issue by using the method of characteristics.

B Method of characteristics

The HJB approach to optimization assumes that one knows the boundary con-
ditions at the end-point of the interval. Unfortunately, in that form, they are
neither useful for conception nor for the understanding of learning schemes Now
we will shown that classic Hamiltonian dynamics that satisfies the HJB equa-
tions for time-independent Hamiltonians also works for the general case of time-
variant Hamiltonians.

Hamiltonian dynamics is sufficient

Let us consider the following (HJ) initial-point problem

(HJ)

(
Vs(t, x) + H(x, Vx(t, x, t) = 0.

V (0, x) = g(x).
(162)

We want to convert this PDE problem into an ODE that can open a dramatically
di↵erent computational perspective. We use the method of characteristic. Now,
let us introduce the co-state p as p := Vx and consider the total derivative18 of
its  coordinate

ṗ
(t) := ṗx

(t) = Vxt
(t, x(t)) + Vxxi

· ẋi. (163)

Now, if V solves (HJ) then

Vxt
(x, t) = �Hx

(x, Vx(x, t), t) � Hpi
(x, Vx(x, t), t) · Vxix

(x, t).

Now if we plug Vxt
(x, t) in Eq. (163) we get

ṗ
(t) = �Hx

(x(t), Vx(x(t), t)| {z }
p(t)

, t)

+
�
ẋi(t) � Hpi

(x(t), Vx(x(t), t)| {z }
p(t)

, t)
�

· Vxxi
(t, x(t)).

(164)

18 We use Einstein notation.
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holds for all t 2 (0, T ), which leads to conclude that H(x(t), p(t)) ⌘ 0 in the
interval. In the following we want to see if this fundamental property holds also
in the case in which the Hamiltonian is time-dependent. We will address this
issue by using the method of characteristics.

B Method of characteristics

The HJB approach to optimization assumes that one knows the boundary con-
ditions at the end-point of the interval. Unfortunately, in that form, they are
neither useful for conception nor for the understanding of learning schemes Now
we will shown that classic Hamiltonian dynamics that satisfies the HJB equa-
tions for time-independent Hamiltonians also works for the general case of time-
variant Hamiltonians.

Hamiltonian dynamics is sufficient

Let us consider the following (HJ) initial-point problem

(HJ)

(
Vs(t, x) + H(x, Vx(t, x, t) = 0.

V (0, x) = g(x).
(162)

We want to convert this PDE problem into an ODE that can open a dramatically
di↵erent computational perspective. We use the method of characteristic. Now,
let us introduce the co-state p as p := Vx and consider the total derivative18 of
its  coordinate

ṗ
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ṗ
(t) = �Hx

(x(t), Vx(x(t), t)| {z }
p(t)

, t)

+
�
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(t) = Vxt
(t, x(t)) + Vxxi
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Now we can promptly see that the following choice
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0 = gx(x0) and solve
(H) with x(0) = x
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Z
t

0
ds(�H(x(s), p(s), s) + Hp(x(s), p(s), s) · p(s)). (167)

From this analysis we can relate HJB equations to the ODE Hamiltonian equa-
tions as stated in the following theorem.

Theorem 16. Let us consider the minimization problem defined by (153) with
initial conditions V(0,x)=g(x). Then, like for Theorem 14, the optimal solution
w

? is determined by eq. 156. Moreover, the two conjugated variables x, p that
satisfy ODE (165) are also solutions of the initial (HJ) problem (162).

The analysis that arises from the method of characteristics establishes a deep
connection between the solution of the (HJB) equations and the (H) Hamiltonian
equations regardless of the given formulation as a Cauchy problem. In particular,
if we know the value of p(T ) then we can establish the optimality.

Theorem 17. Let us consider the minimization problem defined by (153) with
boundary conditions x(0) = x0 and p(T ) = pT . Then the solution of ODE (165)
is also the solution HJB problem (157), that is the solution of the minimization
problem (153).

C Hamilton equations and Lagrangian multipliers

A possible way to attack the the optimization of (2) under the constraint (1) is
to use the Lagrangian approach and find the stationary points of

JL = JT +

Z
T

0
dt

✓
L
�
x(t), w(t), t

�
+ �(t) ·

�
f(x(t), w(t), t)) � ẋ(t)

�◆
. (168)
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Hamilton Equations of Lifelong Learning

No Institute Given

Abstract. This papers gives foundations of lifelong learning in the frame-
work of Bellman’s principle of dynamic programming. The exploration
of optimality naturally leads to the conception of a more general game
theory framework which properly controls the mechanisms of focus of at-
tention. We show that there exist optimal lifelong learning computational
models at the light of the proposed focus game, where the environmen-
tal information is properly filtered to produce an internal representation
that is suitable for the learning agent.

1 Introduction

2 Dynamic programming

Many significant lifelong learning problems can be formulated by the dynamical
system

ẋ(t) = f(x(t), w(t), t), (1)

on the horizon [0, T ], where x 2 X ⇢ Rn. Its generality makes it suitable for
describing laws of nature for participles as well as for the activations of neurons.
The system is often paired with the objective functional

J[0,T ](w) = JT +

Z
T

0
dt L(x(t), w(t), t), (2)

where w : [0, T ] ! Rm is a control function whose purpose is to achieve important
properties of J , like its minimum or, whenever possible, its stationarity. While
Eq. (1) and Eq. (2) express a very general explicit dependence on t, the primary
interest in this paper is for the case in which f(x(t), w(t), t) = f(x(t), w(t), u(t))
where u : [0, T ] ! Rm is the external input. The explicit presence of JT < 1
indicates explicitly that 0 < J[0,T ](w) < 1. Basically, we want to solve

w
? = arg min

w

J[0,T ](w). (3)

This problem is somewhat in between classic optical control and di↵erential
games[1]. In optimal control, the explicit dependence on t is mostly regarded as
a stochastic process, whereas in di↵erential games w and u are regarded as the
actions of two players the task of which is that of minimizing and maximizing J ,
respectively. We will also consider the case in which we remove the lower bound
on J and consider its stationarity, which in fact we will show to include classic
mechanics.

Hamilton Equations of Lifelong Learning

No Institute Given

Abstract. This papers gives foundations of lifelong learning in the frame-
work of Bellman’s principle of dynamic programming. The exploration
of optimality naturally leads to the conception of a more general game
theory framework which properly controls the mechanisms of focus of at-
tention. We show that there exist optimal lifelong learning computational
models at the light of the proposed focus game, where the environmen-
tal information is properly filtered to produce an internal representation
that is suitable for the learning agent.

1 Introduction

2 Dynamic programming

Many significant lifelong learning problems can be formulated by the dynamical
system
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We also have V (0, x(0)) = V (0), x0 = g(x0) and, therefore, if we integrate over
t we get

V (t, x(t)) = g(x0) +

Z
t

0
ds(�H(x(s), p(s), s) + Hp(x(s), p(s), s) · p(s)). (131)

From this analysis we can relate HJB equations to the ODE Hamiltonian equa-
tions as stated in the following theorem.

Theorem 17. Let us consider the minimization problem defined by (118) with
initial conditions V(0,x)=g(x). Then, like for Theorem 15, the optimal solution
w

? is determined by eq. 121. Moreover, the two conjugated variables x, p that
satisfy ODE (129) are also solutions of the initial (HJ) problem (126).

The analysis that arises from the method of characteristics establishes a deep
connection between the solution of the (HJB) equations and the (H) Hamiltonian
equations regardless of the given formulation as a Cauchy problem. In particular,
if we know the value of p(T ) then we can establish the optimality.

Theorem 18. Let us consider the minimization problem defined by (118) with
boundary conditions x(0) = x0 and p(T ) = pT . Then the solution of ODE (129)
is also the solution HJB problem (122), that is the solution of the minimization
problem (118).

C Hamilton equations and Lagrangian multipliers

A possible way to attack the the optimization of (2) under the constraint (1) is
to use the Lagrangian approach and find the stationary points of

JL = JT +

Z
T

0
dt

✓
L
�
x(t), w(t), t

�
+ �(t) · (f(x(t), w(t), t)) � ẋ(t)

◆
. (132)

We introduce the Hamiltonian on the optimal trajectory by setting

H
�
x(t), �(t), w(t), t

�
:= L

�
x(t), w(t), t

�
+ �(t) · f(x(t), w(t), t),

in such a way to re-write JL as

JL = JT +

Z
T

0
dt

✓
H(x(t), �(t), w(t), t) � �(t) · ẋ(t)| {z }

Lx

◆
. (133)

Now, for the purpose of determining a stationary solution of JL, if we use by part
integration, we can promptly see that we can replace �(t) · ẋ(t) with ��̇(t) ·x(t).
We have

Z
T

0
dt �(t) · ẋ(t) =


�(t) · x(t)

�T

0

�
Z

T

0
dt �̇(t) · x(t)
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We have
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Hence we need to determine a stationary solution we also consider

JL(x, �) = JT�

x(t)·�(t)

�T

0

+

Z
T

0
dt
�
H
�
x(t), �(t), w(t), t

�
+ x(t) · �̇(t)

| {z }
L�

�
. (134)

When using the Euler-Lagrange equations on functional JL it is convenient to
use both its representations given by eq. (133) and eq. (134). We get

0 =
d

dt
Lx

ẋ
� Lx

x
! �̇(t) + Hx(x(t), �(t), w(t), t) = 0

0 =
d

dt
L�

�̇
� L�

�
! ẋ(t) � H�(x(t), �(t), w(t), t) = 0

0 =
d

dt
L�

ẇ
� L�

w
! Hx(x(t), �(t), w(t), t) = 0.

Clearly, the last equation can also be found by using Lx

x
. The third condition

leads to marginalize w. In particular, when the stationary point corresponds
with a minimum we have

H(x, �, t) = min
w

H(x, �, w, t). (135)

Finally, this leads to the Hamiltonian equations

(
�̇(t) = �Hx(x(t), �(t), t)

ẋ(t) = �H�(x(t), �(t), t).
(136)

We notice in passing that eq. (??) corresponds with eq. (131). Basically, the
Lagrangian multiplier � is formally equivalent to the co-state p.

References

1. L. C. Evans, “An introduction to mathematical optimal control theory – version
0.2.”

2. V. Dobson and D. Y. Teller, “Visual acuity in human infants: A review and com-
parison of behavioral and electrophysiological studies,” Vision Research, vol. 18,
1978.

3. A. Betti and M. Gori, “The principle of least cognitive action,” Theoretical Computer
Science, vol. 633, no. C, pp. 83–99, Jun. 2016.

4. I. Gelfand and S. Fomin, Calculus of Variations. Dover publications, Inc, 1963.

C. HAMILTON EQUATIONS AND LAGRANGIAN MULTIPLIERS 43

We also have V (0, x(0)) = V (0), x0 = g(x0) and, therefore, if we integrate over
t we get

V (t, x(t)) = g(x0) +

Z
t

0
ds(�H(x(s), p(s), s) + Hp(x(s), p(s), s) · p(s)). (131)

From this analysis we can relate HJB equations to the ODE Hamiltonian equa-
tions as stated in the following theorem.

Theorem 17. Let us consider the minimization problem defined by (118) with
initial conditions V(0,x)=g(x). Then, like for Theorem 15, the optimal solution
w

? is determined by eq. 121. Moreover, the two conjugated variables x, p that
satisfy ODE (129) are also solutions of the initial (HJ) problem (126).

The analysis that arises from the method of characteristics establishes a deep
connection between the solution of the (HJB) equations and the (H) Hamiltonian
equations regardless of the given formulation as a Cauchy problem. In particular,
if we know the value of p(T ) then we can establish the optimality.

Theorem 18. Let us consider the minimization problem defined by (118) with
boundary conditions x(0) = x0 and p(T ) = pT . Then the solution of ODE (129)
is also the solution HJB problem (122), that is the solution of the minimization
problem (118).

C Hamilton equations and Lagrangian multipliers

A possible way to attack the the optimization of (2) under the constraint (1) is
to use the Lagrangian approach and find the stationary points of

JL = JT +

Z
T

0
dt

✓
L
�
x(t), w(t), t

�
+ �(t) · (f(x(t), w(t), t)) � ẋ(t)

◆
. (132)

We introduce the Hamiltonian on the optimal trajectory by setting

H
�
x(t), �(t), w(t), t

�
:= L

�
x(t), w(t), t

�
+ �(t) · f(x(t), w(t), t),

in such a way to re-write JL as

JL = JT +

Z
T

0
dt

✓
H(x(t), �(t), w(t), t) � �(t) · ẋ(t)| {z }

Lx

◆
. (133)

Now, for the purpose of determining a stationary solution of JL, if we use by part
integration, we can promptly see that we can replace �(t) · ẋ(t) with ��̇(t) ·x(t).
We have

Z
T

0
dt �(t) · ẋ(t) =


�(t) · x(t)

�T

0

�
Z

T

0
dt �̇(t) · x(t)

tw
o different w

ays of w
riting the functional
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Hence we need to determine a stationary solution we also consider

JL(x, �) = JT�

x(t)·�(t)

�T

0

+

Z
T

0
dt
�
H
�
x(t), �(t), w(t), t

�
+ x(t) · �̇(t)

| {z }
L�

�
. (134)

When using the Euler-Lagrange equations on functional JL it is convenient to
use both its representations given by eq. (133) and eq. (134). We get

0 =
d

dt
Lx

ẋ
� Lx

x
! �̇(t) + Hx(x(t), �(t), w(t), t) = 0

0 =
d

dt
L�

�̇
� L�

�
! ẋ(t) � H�(x(t), �(t), w(t), t) = 0

0 =
d

dt
L�

ẇ
� L�

w
! Hx(x(t), �(t), w(t), t) = 0.

Clearly, the last equation can also be found by using Lx

x
. The third condition

leads to marginalize w. In particular, when the stationary point corresponds
with a minimum we have

H(x, �, t) = min
w

H(x, �, w, t). (135)

Finally, this leads to the Hamiltonian equations

(
�̇(t) = �Hx(x(t), �(t), t)

ẋ(t) = �H�(x(t), �(t), t).
(136)

We notice in passing that eq. (??) corresponds with eq. (131). Basically, the
Lagrangian multiplier � is formally equivalent to the co-state p.
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CHARACTERISTIC EQUATIONS OF HJB 
HAMILTONIAN “LAWS”

4

Remark 1. The two arguments u, t in H(x, p, w, u, t) and H(x, p, u, t) comes from
the need to express the time-dependence due to the environmental interaction
(argument u) and the explicit temporal evolution of the Lagrangian3. For the
sake of simplicity, in the remainder of the paper, sometimes, we will aggregate
the explicit temporal dependence on

H(x(t), p(t), u(t), t| {z }
t

) ⇠ H(x(t), p(t), t).

We are ready to establish the following result concerning learning agent L. In
the following, we assume that L(x(t), w(t), t) = e

��(T�t)L(x(t), w(t)).

Theorem 1. Let us assume that the learning of agent L can be framed as the
minimization of R[0,T ]. The optimal policy w

? = arg min R[0,T ](w) is determined
by

w
?(t) = arg min

w

�
L(x(t), w(t), t) + p · f(x(t), w(t), u(t))

�
(11)

where the state x and the co-state p satisfy
(

ẋ(t) = Hp(x(t), p(t), u(t), t) = f(x(t), w(t), u(t))

ṗ(t) = �Hx(x(t), p(t), u(t), t),
(12)

under the boundary conditions4 x(0) = x0 and p(T ) = pT = Vx(T, x(T )).

Proof. The proof comes as a straightforward application of characteristic equa-
tions (see Appendix A, Theorem 23).

Now we prove that we can always reformulate the learning problem by the
introduction of appropriate auxiliary variables that make it possible to determine
w

? as expressed by eq. (11), by an explicit close form.

Theorem 2. Let v := ẇ the velocity of the previously defined control variable.
The learning problem can be reformulated by the new Lagrangian

L(x, w, t) L(⇠, w|{z}
x

, t) +
1

2
mv

2 (13)

along with the dynamical system
(

ẋ(t) = f(x(t), v(t), t)

ẇ(t) = v(t).
(14)

The control law obeys the equation

v
?

i
(t) = � pi

mi

(t) ! w
?

i
(t) = � 1

mi

Z
t

0
ds pi(s) (15)

3 See term e
�t in Eq. (7).

4 Notice that we do not need the knowledge of x(T ).
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9. CASE STUDIES 19

makes it explicit the required relationship between H and H̃. The symmetry
requires that

p(t) = Vx(t, x(t)) = e
��(T�t)

g(p, !, u)

x(t) = Ṽp(t, p(t)) = e
��(T�t)

f(x, w, u).
(45)

While keeping consistency is generally di�cult, the special case H(x, p, u, t) ' 0
and H̃(p, x, u, t) ' 0 dramatically simplifies the computational structure.

Now let us consider the function

C(x, p, w, u, t) :=
1

2
H2(x, p, w, u, t)

+
1

2

�
Hp(x, p, w, u, t) + H̃x(p, x, !, u, t)

�2

+
1

2

�
Hx(x, p, w, u, t) + H̃p(p, x, !, u, t)

�2

C̃(x, p,!, u, t) :=
1

2
H̃2(x, p,!, u, t)

+
1

2

�
Hp(x, p, w, u, t) + H̃x(p, x, !, u, t)

�2

+
1

2

�
Hx(x, p, w, u, t) + H̃p(p, x, !, u, t)

�2

(46)

the actual computation of the two Hamiltonian functions and their consis-
tency

9 Case studies

9.1 LQ problem

As an example of application of the HJB equations let us consider the following
LP problem, where

ẋ = Ax + Bw (47)

and

L(x, w, t) =
1

2
x

0
Qx +

1

2
w

0
Rw (48)

solution by using HJB eqs

In order to solve the optimization problem we assume that

V (t, x) =
1

2
x

0
P (t)x. (49)

Furthermore we look for p such that p = Px. Now the optimal control strategy
is given by

w
? = min

w

✓
1

2
x

0
Qx +

1

2
w

0
Rw + p

0(Ax + Bw)

◆

= �R
�1

B
0
p = �R

�1
B

0
Px := Fx.

(50)
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20

This makes it possible to determine the Hamiltonian

H(x, p, w)
��
w?

=
1

2
x

0
Qx +


1

2
w

0
Rw + p

0 ·
�
Ax + Bw

��

w?

=
1

2
x

0
Qx +

1

2
(R�1

B
0
p)0

R(R�1
B

0
p) � p

0 ·
�
Ax + B(R�1

B
0
p)
�

=
1

2
x

0
Qx +

1

2
p

0
BR

�1
B

0
| {z }

S

p � p
0 ·

�
Ax + BR

�1
B

0
p
�

=
1

2
x

0
Qx � 1

2
p

0
Sp + p

0
Ax

(51)

The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (48) into

ẋ = (A + BF )x.

Once the Hamiltonian is known (see eq. 51) we can write down the HJB equation

1

2
x

0
Ṗ x +

1

2
x

0
Qx � 1

2
p

0
Sp + p

0
Ax =

1

2
x

0
Ṗ x +

1

2
x

0
Qx � 1

2
x

0
P

0
SPx + x

0
P

0
Ax = 0.

If P is symmetric we have7 A
0
P = PA and since the above equation holds for

any x we get
Ṗ + Q + PA + A

0
P � PSP = 0. (52)

When solving with respect to P we get the solution of the problem.

solution by using Hamilton equations

Notice that we can achieve the same result when applying the characteristic
equations. When considering the Hamiltonian we have

ẋ = Ax + Bw = Ax � BR
�1

B| {z }
S

p

ṗ = �Qx � A
0
p.

(53)

When considering the circuital assumption p = Px we get ṗ = Ṗ x + Pẋ. From
the state equation Pẋ = PAx � PSPx and, therefore,

ṗ = �Qx � A
0
Px = Ṗ x + PAx � PSPx. (54)

That is, for any x:

Qx + A
0
Px + Ṗ x + PAx � PSPx = 0 ! Ṗ + Q + A

0
P + PA � PSP = 0.

We notice in passing that since P satisfies

Ṗ + Q + A
0
P + PA � PSP = 0, (55)

7 Using tensorial notation we have A0P  aipj = pjai  PA.

feedback control
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Px + Ṗ x + PAx � PSPx = 0 ! Ṗ + Q + A
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Rw (48)

solution by using HJB eqs

In order to solve the optimization problem we assume that

V (t, x) =
1

2
x

0
P (t)x. (49)

Furthermore we look for p such that p = Px. Now the optimal control strategy
is given by

w
? = min

w

✓
1

2
x

0
Qx +

1

2
w

0
Rw + p

0(Ax + Bw)

◆

= �R
�1

B
0
p = �R

�1
B

0
Px := Fx.

(50)
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This makes it possible to determine the Hamiltonian

H(x, p, w)
��
w?

=
1

2
x

0
Qx +


1

2
w

0
Rw + p

0 ·
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Ax + Bw
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=
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2
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2
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B
0
p)0
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0
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0
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=
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p
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0
| {z }
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p � p
0 ·
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2
p

0
Sp + p

0
Ax

(56)

The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (53) into

ẋ = (A + BF )x. (57)

Once the Hamiltonian is known (see eq. 56) we can write down the HJB equation
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2
x

0
Ṗ x +
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2
x

0
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2
p

0
Sp + p

0
Ax =

1

2
x

0
Ṗ x +

1

2
x

0
Qx � 1

2
x

0
P

0
SPx + x

0
P

0
Ax = 0.

Since P is symmetric we have7 A
0
P = PA and since the above equation holds

for any x we get
Ṗ + Q + PA + A

0
P � PSP = 0. (58)

The boundary condition involves the value P (T ) that is given. Basically 1
2x

0
P (T )x =

g(x) is the final cost. It is often the case that one looks for P (T ) = 0. When
solving with respect to P we get the solution of the problem.

Asymptotical Stability of the Control Law

Now we analyze the stability of the controlled system (57). We consider the
Lyapunov function

W (t) =
1

2
x

0(t)P̄ x(t),

where P is the solution of the algebraic Riccati’s equation over [0, 1). We have

Ẇ (t) = ẋ
0
P̄ x(t) = x

0
P̄ (A � BR

�1
B

0
P̄ )x(t)

=
1

2
x

0(t)

✓
P̄ (A � BR

�1
B

0
P̄ ) + (A0 � P̄BR

�1
B

0)P̄

◆
x(t)

Now, P̄ satisfies algebraic Riccati’s equation and, therefore

P̄ (A � BR
�1

B
0
P̄ ) + (A0 � P̄BR

�1
B

0)P̄

= P̄A + A
0
P̄ � 2P̄SP̄ = Q + P̄A + A

0
P̄ � P̄SP̄| {z }

0

�Q � P̄SP̄ = �Q � P̄SP̄ .

7 Using tensorial notation we have A0P  aipj = pjai  PA.
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V (T, x) = g(x)terminal condition

20

The minimum can be found for w
? = �p/(2RC) which makes it possible to

determine the Hamiltonian H(x, p) = � 1
4

p
2

RC2 . The HJB eqs are

(
Vt � 1

4
V

2
x

RC2 = 0.

x(0) = 1, x(1) = 2.
(50)

We can promptly see that

V (t, x) = �RC
2

1 + t
x
2 +  (51)

is the general solution. If we impose the terminal condition x(1) = 2 with
V (1, x) = 0 we get  = 2RC

2. Now we can compute the co-state p = Vx =
�2RC

2
x/(1 + t) and then the control signal

w = Cx/(1 + t).

When considering the state equation we get

ẋ =
1

C
w =

x

1 + t
.

This yields lnx = ln(1 + t) and, finally, x(t) = 1 + t.

9.2 LQ problem

As an example of application of the HJB equations let us consider the following
LP problem, where

ẋ = Ax + Bw (52)

and

L(x, w, t) =
1

2
x

0
Qx +

1

2
w

0
Rw (53)

solution by using HJB eqs

In order to solve the optimization problem we assume that

V (t, x) =
1

2
x

0
P (t)x. (54)

We assume that P is symmetric and positive definite. As a consequence of the
quadratic form we get Vx(t, x) = p = Px. Now the optimal control strategy is
given by

w
? = min

w

✓
1

2
x

0
Qx +

1

2
w

0
Rw + p

0(Ax + Bw)

◆

= �R
�1

B
0
p = �R

�1
B

0
Px := Fx.

(55)
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This makes it possible to determine the Hamiltonian

H(x, p, w)
��
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(51)

The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (48) into

ẋ = (A + BF )x.

Once the Hamiltonian is known (see eq. 51) we can write down the HJB equation
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2
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0
Ṗ x +
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2
x

0
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2
p

0
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0
Ax =
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2
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0
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0
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0
P

0
SPx + x

0
P

0
Ax = 0.

If P is symmetric we have7 A
0
P = PA and since the above equation holds for

any x we get
Ṗ + Q + PA + A

0
P � PSP = 0. (52)

When solving with respect to P we get the solution of the problem.

solution by using Hamilton equations

Notice that we can achieve the same result when applying the characteristic
equations. When considering the Hamiltonian we have

ẋ = Ax + Bw = Ax � BR
�1

B| {z }
S

p

ṗ = �Qx � A
0
p.

(53)

When considering the circuital assumption p = Px we get ṗ = Ṗ x + Pẋ. From
the state equation Pẋ = PAx � PSPx and, therefore,

ṗ = �Qx � A
0
Px = Ṗ x + PAx � PSPx. (54)

That is, for any x:

Qx + A
0
Px + Ṗ x + PAx � PSPx = 0 ! Ṗ + Q + A

0
P + PA � PSP = 0.

We notice in passing that since P satisfies

Ṗ + Q + A
0
P + PA � PSP = 0, (55)

7 Using tensorial notation we have A0P  aipj = pjai  PA.

Riccati equation
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This makes it possible to determine the Hamiltonian

H(x, p, w)
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=
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2
x

0
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1
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w

0
Rw + p

0 ·
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(56)

The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (53) into

ẋ = (A + BF )x. (57)

Once the Hamiltonian is known (see eq. 56) we can write down the HJB equation

1

2
x

0
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Since P is symmetric we have7 A
0
P = PA and since the above equation holds

for any x we get
Ṗ + Q + PA + A

0
P � PSP = 0. (58)

The boundary condition involves the value P (T ) that is given. Basically 1
2x

0
P (T )x =

g(x) is the final cost. It is often the case that one looks for P (T ) = 0. When
solving with respect to P we get the solution of the problem.

Asymptotical Stability of the Control Law

Now we analyze the stability of the controlled system (57). We consider the
Lyapunov function

W (t) =
1

2
x

0(t)P̄ x(t),

where P is the solution of the algebraic Riccati’s equation over [0, 1). We have

Ẇ (t) = ẋ
0
P̄ x(t) = x

0
P̄ (A � BR

�1
B

0
P̄ )x(t)

=
1

2
x

0(t)

✓
P̄ (A � BR
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0
P̄ ) + (A0 � P̄BR
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B

0)P̄

◆
x(t)

Now, P̄ satisfies algebraic Riccati’s equation and, therefore

P̄ (A � BR
�1

B
0
P̄ ) + (A0 � P̄BR

�1
B

0)P̄

= P̄A + A
0
P̄ � 2P̄SP̄ = Q + P̄A + A

0
P̄ � P̄SP̄| {z }

0

�Q � P̄SP̄ = �Q � P̄SP̄ .

7 Using tensorial notation we have A0P  aipj = pjai  PA.

Let’s assume  a quadratic function
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V (T, x) = g(x)terminal condition
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This makes it possible to determine the Hamiltonian

H(x, p, w)
��
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(51)

The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (48) into

ẋ = (A + BF )x.

Once the Hamiltonian is known (see eq. 51) we can write down the HJB equation
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0
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P

0
SPx + x

0
P

0
Ax = 0.

If P is symmetric we have7 A
0
P = PA and since the above equation holds for

any x we get
Ṗ + Q + PA + A

0
P � PSP = 0. (52)

When solving with respect to P we get the solution of the problem.

solution by using Hamilton equations

Notice that we can achieve the same result when applying the characteristic
equations. When considering the Hamiltonian we have

ẋ = Ax + Bw = Ax � BR
�1

B| {z }
S

p

ṗ = �Qx � A
0
p.

(53)

When considering the circuital assumption p = Px we get ṗ = Ṗ x + Pẋ. From
the state equation Pẋ = PAx � PSPx and, therefore,

ṗ = �Qx � A
0
Px = Ṗ x + PAx � PSPx. (54)

That is, for any x:

Qx + A
0
Px + Ṗ x + PAx � PSPx = 0 ! Ṗ + Q + A

0
P + PA � PSP = 0.

We notice in passing that since P satisfies

Ṗ + Q + A
0
P + PA � PSP = 0, (55)

7 Using tensorial notation we have A0P  aipj = pjai  PA.

We solve
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makes it explicit the required relationship between H and H̃. The symmetry
requires that

p(t) = Vx(t, x(t)) = e
��(T�t)

g(p, !, u)

x(t) = Ṽp(t, p(t)) = e
��(T�t)

f(x, w, u).
(45)

While keeping consistency is generally di�cult, the special case H(x, p, u, t) ' 0
and H̃(p, x, u, t) ' 0 dramatically simplifies the computational structure.

Now let us consider the function

C(x, p, w, u, t) :=
1

2
H2(x, p, w, u, t)

+
1

2

�
Hp(x, p, w, u, t) + H̃x(p, x, !, u, t)

�2

+
1

2

�
Hx(x, p, w, u, t) + H̃p(p, x, !, u, t)

�2
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1

2
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+
1

2
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Hp(x, p, w, u, t) + H̃x(p, x, !, u, t)

�2

+
1

2

�
Hx(x, p, w, u, t) + H̃p(p, x, !, u, t)

�2

(46)

the actual computation of the two Hamiltonian functions and their consis-
tency

9 Case studies

9.1 LQ problem

As an example of application of the HJB equations let us consider the following
LP problem, where

ẋ = Ax + Bw (47)

and

L(x, w, t) =
1

2
x

0
Qx +

1

2
w

0
Rw (48)

solution by using HJB eqs

In order to solve the optimization problem we assume that

V (t, x) =
1

2
x

0
P (t)x. (49)

Furthermore we look for p such that p = Px. Now the optimal control strategy
is given by

w
? = min

w

✓
1

2
x

0
Qx +

1

2
w

0
Rw + p

0(Ax + Bw)

◆

= �R
�1

B
0
p = �R

�1
B

0
Px := Fx.

(50)

We find the control law

20

The minimum can be found for w
? = �p/(2RC) which makes it possible to

determine the Hamiltonian H(x, p) = � 1
4

p
2

RC2 . The HJB eqs are

(
Vt � 1

4
V

2
x

RC2 = 0.

x(0) = 1, x(1) = 2.
(50)

We can promptly see that

V (t, x) = �RC
2

1 + t
x
2 +  (51)

is the general solution. If we impose the terminal condition x(1) = 2 with
V (1, x) = 0 we get  = 2RC

2. Now we can compute the co-state p = Vx =
�2RC

2
x/(1 + t) and then the control signal

w = Cx/(1 + t).

When considering the state equation we get

ẋ =
1

C
w =

x

1 + t
.

This yields lnx = ln(1 + t) and, finally, x(t) = 1 + t.

9.2 LQ problem

As an example of application of the HJB equations let us consider the following
LP problem, where

ẋ = Ax + Bw (52)

and

L(x, w, t) =
1

2
x

0
Qx +

1

2
w

0
Rw (53)

solution by using HJB eqs

In order to solve the optimization problem we assume that

V (t, x) =
1

2
x

0
P (t)x. (54)

We assume that P is symmetric and positive definite. As a consequence of the
quadratic form we get Vx(t, x) = p = Px. Now the optimal control strategy is
given by

w
? = min

w

✓
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Rw + p

0(Ax + Bw)
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Px := Fx.

(55)

solution of the PDE
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This makes it possible to determine the Hamiltonian

H(x, p, w)
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(56)

The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (53) into

ẋ = (A + BF )x. (57)

Once the Hamiltonian is known (see eq. 56) we can write down the HJB equation
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Since P is symmetric we have7 A
0
P = PA and since the above equation holds

for any x we get
Ṗ + Q + PA + A

0
P � PSP = 0. (58)

The boundary condition involves the value P (T ) that is given. Basically 1
2x

0
P (T )x =

g(x) is the final cost. It is often the case that one looks for P (T ) = 0. When
solving with respect to P we get the solution of the problem.

Asymptotical Stability of the Control Law

Now we analyze the stability of the controlled system (57). We consider the
Lyapunov function

W (t) =
1

2
x

0(t)P̄ x(t),

where P is the solution of the algebraic Riccati’s equation over [0, 1). We have

Ẇ (t) = ẋ
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Now, P̄ satisfies algebraic Riccati’s equation and, therefore

P̄ (A � BR
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P̄ ) + (A0 � P̄BR
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B

0)P̄

= P̄A + A
0
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0
P̄ � P̄SP̄| {z }

0

�Q � P̄SP̄ = �Q � P̄SP̄ .

7 Using tensorial notation we have A0P  aipj = pjai  PA.
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makes it explicit the required relationship between H and H̃. The symmetry
requires that
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��(T�t)
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��(T�t)
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(45)

While keeping consistency is generally di�cult, the special case H(x, p, u, t) ' 0
and H̃(p, x, u, t) ' 0 dramatically simplifies the computational structure.
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the actual computation of the two Hamiltonian functions and their consis-
tency

9 Case studies

9.1 LQ problem

As an example of application of the HJB equations let us consider the following
LP problem, where

ẋ = Ax + Bw (47)

and
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2
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0
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2
w

0
Rw (48)

solution by using HJB eqs

In order to solve the optimization problem we assume that
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2
x

0
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2
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◆
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B
0
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B

0
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(50)

20

This makes it possible to determine the Hamiltonian
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The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (48) into

ẋ = (A + BF )x.

Once the Hamiltonian is known (see eq. 51) we can write down the HJB equation
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Ṗ x +

1

2
x

0
Qx � 1

2
p

0
Sp + p

0
Ax =

1

2
x

0
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If P is symmetric we have7 A
0
P = PA and since the above equation holds for

any x we get
Ṗ + Q + PA + A

0
P � PSP = 0. (52)

When solving with respect to P we get the solution of the problem.

solution by using Hamilton equations

Notice that we can achieve the same result when applying the characteristic
equations. When considering the Hamiltonian we have

ẋ = Ax + Bw = Ax � BR
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B| {z }
S

p

ṗ = �Qx � A
0
p.

(53)

When considering the circuital assumption p = Px we get ṗ = Ṗ x + Pẋ. From
the state equation Pẋ = PAx � PSPx and, therefore,

ṗ = �Qx � A
0
Px = Ṗ x + PAx � PSPx. (54)

That is, for any x:
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0
Px + Ṗ x + PAx � PSPx = 0 ! Ṗ + Q + A

0
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We notice in passing that since P satisfies

Ṗ + Q + A
0
P + PA � PSP = 0, (55)

7 Using tensorial notation we have A0P  aipj = pjai  PA.

feedback control

Lyapunov function

9. CASE STUDIES 21

This makes it possible to determine the Hamiltonian
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The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (53) into

ẋ = (A + BF )x. (57)

Once the Hamiltonian is known (see eq. 56) we can write down the HJB equation
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Since P is symmetric we have7 A
0
P = PA and since the above equation holds

for any x we get
Ṗ + Q + PA + A

0
P � PSP = 0. (58)

The boundary condition involves the value P (T ) that is given. Basically 1
2x

0
P (T )x =

g(x) is the final cost. It is often the case that one looks for P (T ) = 0. When
solving with respect to P we get the solution of the problem.

Asymptotical Stability of the Control Law

Now we analyze the stability of the controlled system (57). We consider the
Lyapunov function

W (t) =
1

2
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0(t)P̄ x(t),

where P is the solution of the algebraic Riccati’s equation over [0, 1). We have
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�Q � P̄SP̄ = �Q � P̄SP̄ .

7 Using tensorial notation we have A0P  aipj = pjai  PA.
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The control strategy based on w
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transforms the dynamics of system (53) into
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Once the Hamiltonian is known (see eq. 56) we can write down the HJB equation
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solving with respect to P we get the solution of the problem.
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Now we analyze the stability of the controlled system (57). We consider the
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Now, P̄ satisfies algebraic Riccati’s equation and, therefore
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�Q � P̄SP̄ = �Q � P̄SP̄ .

7 Using tensorial notation we have A0P  aipj = pjai  PA.

S3P-2024 - Hamiltonian Learning



ASYMPTOTIC STABILITY (CON’T)

9. CASE STUDIES 21

This makes it possible to determine the Hamiltonian
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The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (53) into

ẋ = (A + BF )x. (57)

Once the Hamiltonian is known (see eq. 56) we can write down the HJB equation
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The boundary condition involves the value P (T ) that is given. Basically 1
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g(x) is the final cost. It is often the case that one looks for P (T ) = 0. When
solving with respect to P we get the solution of the problem.

Asymptotical Stability of the Control Law

Now we analyze the stability of the controlled system (57). We consider the
Lyapunov function

W (t) =
1
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where P is the solution of the algebraic Riccati’s equation over [0, 1). We have
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Hence we get

Ẇ (t) = �1

2
x

0�
Q + P̄SP̄

�
x  0.

since Q + P̄SP̄ � 0. The asymptotical stability arises immediately in case of
Q > 0, R > 0.

solution by using Hamilton equations

Notice that we can achieve the same result when applying the characteristic
equations. When considering the Hamiltonian we have

ẋ = Ax + Bw = Ax�BR
�1

B| {z }
S

p

ṗ = �Qx�A
0
p.

(59)

When considering the circuital assumption p = Px we get ṗ = Ṗ x + Pẋ. From
the state equation Pẋ = PAx� PSPx and, therefore,

ṗ = �Qx�A
0
Px = Ṗ x + PAx� PSPx. (60)

That is, for any x:

Qx + A
0
Px + Ṗ x + PAx� PSPx = 0! Ṗ + Q + A

0
P + PA� PSP = 0.

We notice in passing that since P satisfies

Ṗ + Q + A
0
P + PA� PSP = 0, (61)

it is symmetric. This can promptly be seen by replacing P with P
0 in this form

of Riccati’s equation. We can also easily see that the quadratic assumption on
the value function of eq. (54) can in fact be derived as consequence of the H
equations. According to the HJB eqs we have

Vt + H(x, Vx) = Vt +
1

2
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0
Qx� 1

2
p

0
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Ax = 0. (62)

From eqs (59) we get
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From (62) and (63) we get Vt = 1
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and, finally

V (t, x) =
1

2
x

0(t)

Z
t

0
dsṖ (s)x(t) =

1

2
x

0(t)P (t)x(t). (65)

9. CASE STUDIES 21

This makes it possible to determine the Hamiltonian

H(x, p, w)
��
w?

=
1

2
x

0
Qx +


1

2
w

0
Rw + p

0 ·
�
Ax + Bw

��

w?

=
1

2
x

0
Qx +

1

2
(R�1

B
0
p)0

R(R�1
B

0
p) � p

0 ·
�
Ax + B(R�1

B
0
p)
�

=
1

2
x

0
Qx +

1

2
p

0
BR

�1
B

0
| {z }

S

p � p
0 ·

�
Ax + BR

�1
B

0
p
�

=
1

2
x

0
Qx � 1

2
p

0
Sp + p

0
Ax

(56)

The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (53) into

ẋ = (A + BF )x. (57)

Once the Hamiltonian is known (see eq. 56) we can write down the HJB equation
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The boundary condition involves the value P (T ) that is given. Basically 1
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g(x) is the final cost. It is often the case that one looks for P (T ) = 0. When
solving with respect to P we get the solution of the problem.

Asymptotical Stability of the Control Law

Now we analyze the stability of the controlled system (57). We consider the
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dsṖ (s)x(t) =

1

2
x

0(t)P (t)x(t). (65)

22

Hence we get
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and, finally
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asymptotic stability

The “magic” of asymptotic stability: we need to solve Riccati’s equation 

<latexit sha1_base64="kc4I8xRGXmG0tOpKfaOOIrsQxaY="></latexit>

P̄

Riccati’s equation
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9.5 LQ problem

As an example of application of the HJB equations let us consider the following
LP problem, where

ẋ = Ax + Bw (68)

and

L(x, w, t) =
1

2
x

0
Qx +

1

2
w

0
Rw (69)

solution by using HJB eqs

In order to solve the optimization problem we assume that

V (t, x) =
1

2
x

0
P (t)x. (70)

We assume that P is symmetric and positive definite. As a consequence of the
quadratic form we get Vx(t, x) = p = Px. Now the optimal control strategy is
given by

w
? = min

w

✓
1

2
x

0
Qx +

1

2
w

0
Rw + p

0(Ax + Bw)

◆

= �R
�1

B
0
p = �R

�1
B

0
Px := Fx.

(71)

This makes it possible to determine the Hamiltonian

H(x, p, w)
��
w?
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2
x

0
Qx +


1

2
w

0
Rw + p

0 ·
�
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0
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B
0
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p
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0
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p � p
0 ·
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B

0
p
�

=
1

2
x

0
Qx � 1

2
p

0
Sp + p

0
Ax

(72)

The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (69) into

ẋ = (A + BF )x. (73)

Once the Hamiltonian is known (see eq. 72) we can write down the HJB equation

1

2
x

0
Ṗ x +
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2
x
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Qx � 1

2
p
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Sp + p
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1

2
x

0
Ṗ x +

1

2
x

0
Qx � 1

2
x

0
P

0
SPx + x

0
P

0
Ax = 0.

Since P is symmetric we have8 A
0
P = PA and since the above equation holds

for any x we get
Ṗ + Q + PA + A

0
P � PSP = 0. (74)

8 Using tensorial notation we have A0P  aipj = pjai  PA.
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ẋ = Ax + Bw (68)

and

L(x, w, t) =
1

2
x

0
Qx +

1

2
w

0
Rw (69)

solution by using HJB eqs

In order to solve the optimization problem we assume that

V (t, x) =
1

2
x

0
P (t)x. (70)

We assume that P is symmetric and positive definite. As a consequence of the
quadratic form we get Vx(t, x) = p = Px. Now the optimal control strategy is
given by

w
? = min

w

✓
1

2
x

0
Qx +

1

2
w

0
Rw + p

0(Ax + Bw)

◆

= �R
�1

B
0
p = �R

�1
B

0
Px := Fx.

(71)

This makes it possible to determine the Hamiltonian

H(x, p, w)
��
w?

=
1

2
x

0
Qx +


1

2
w

0
Rw + p

0 ·
�
Ax + Bw

��

w?

=
1

2
x

0
Qx +

1

2
(R�1

B
0
p)0

R(R�1
B

0
p) � p

0 ·
�
Ax + B(R�1

B
0
p)
�

=
1

2
x

0
Qx +

1

2
p

0
BR

�1
B

0
| {z }

S

p � p
0 ·

�
Ax + BR

�1
B

0
p
�

=
1

2
x

0
Qx � 1

2
p

0
Sp + p

0
Ax

(72)

The control strategy based on w
? acts as a feedback control by the state and

transforms the dynamics of system (69) into

ẋ = (A + BF )x. (73)

Once the Hamiltonian is known (see eq. 72) we can write down the HJB equation

1

2
x

0
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9. CASE STUDIES 25

The boundary condition involves the value P (T ) that is given. Basically 1
2x

0
P (T )x =

g(x) is the final cost. It is often the case that one looks for P (T ) = 0. When
solving with respect to P we get the solution of the problem.

Asymptotical Stability of the Control Law

Now we analyze the stability of the controlled system (73). We consider the
Lyapunov function

W (t) =
1

2
x

0(t)P̄ x(t),

where P is the solution of the algebraic Riccati’s equation over [0, 1). We have

Ẇ (t) = ẋ
0
P̄ x(t) = x

0
P̄ (A � BR

�1
B

0
P̄ )x(t)

=
1

2
x

0(t)

✓
P̄ (A � BR

�1
B

0
P̄ ) + (A0 � P̄BR

�1
B

0)P̄

◆
x(t)

Now, P̄ satisfies algebraic Riccati’s equation and, therefore

P̄ (A � BR
�1

B
0
P̄ ) + (A0 � P̄BR

�1
B

0)P̄

= P̄A + A
0
P̄ � 2P̄SP̄ = Q + P̄A + A

0
P̄ � P̄SP̄| {z }

0

�Q � P̄SP̄ = �Q � P̄SP̄ .

Hence we get

Ẇ (t) = �1

2
x

0�
Q + P̄SP̄

�
x  0.

since Q + P̄SP̄ � 0. The asymptotical stability arises immediately in case of
Q > 0, R > 0.

solution by using Hamilton equations

Notice that we can achieve the same result when applying the characteristic
equations. When considering the Hamiltonian we have

ẋ = Ax + Bw = Ax � BR
�1

B| {z }
S

p

ṗ = �Qx � A
0
p.

(75)

This can be compactly written as

˙✓
x

p

◆
=

✓
A �S

�Q �A
0

◆
·
✓

x

p

◆
(76)

When considering the circuital assumption p = Px we get ṗ = Ṗ x + Pẋ. From
the state equation Pẋ = PAx � PSPx and, therefore,

ṗ = �Qx � A
0
Px = Ṗ x + PAx � PSPx. (77)

That is, for any x:

Qx + A
0
Px + Ṗ x + PAx � PSPx = 0 ! Ṗ + Q + A

0
P + PA � PSP = 0.
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9. CASE STUDIES 25

The boundary condition involves the value P (T ) that is given. Basically 1
2x

0
P (T )x =

g(x) is the final cost. It is often the case that one looks for P (T ) = 0. When
solving with respect to P we get the solution of the problem.

Asymptotical Stability of the Control Law

Now we analyze the stability of the controlled system (73). We consider the
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since Q + P̄SP̄ � 0. The asymptotical stability arises immediately in case of
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solution by using Hamilton equations

Notice that we can achieve the same result when applying the characteristic
equations. When considering the Hamiltonian we have
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When considering the circuital assumption p = Px we get ṗ = Ṗ x + Pẋ. From
the state equation Pẋ = PAx � PSPx and, therefore,

ṗ = �Qx � A
0
Px = Ṗ x + PAx � PSPx. (77)

That is, for any x:

Qx + A
0
Px + Ṗ x + PAx � PSPx = 0 ! Ṗ + Q + A

0
P + PA � PSP = 0.
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26

We notice in passing that since P satisfies

Ṗ + Q + A
0
P + PA� PSP = 0, (78)

it is symmetric. This can promptly be seen by replacing P with P
0 in this form

of Riccati’s equation. We can also easily see that the quadratic assumption on
the value function of eq. (70) can in fact be derived as consequence of the H
equations. According to the HJB eqs we have

Vt + H(x, Vx) = Vt +
1

2
x

0
Qx� 1

2
p

0
Sp + p

0
Ax = 0. (79)

From eqs (75) we get

p
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ẋ� x

0
ṗ = p

0
Ax� p

0
Sp + x
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Qx + x
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0
p 

(
p

0
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Ax� p

0
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x
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0
Qx� x

0
A

0
p

(80)

From (79) and (80) we get Vt = 1
2

�
p

0
ẋ� x

0
ṗ
�
. Since p(t) = P (x)x(t) we get

Vt +
1

2

✓
x

0
Pẋ� x

0�
Ṗ x + Pẋ

�◆
= Vt �

1

2
x

0
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Because of the meaning of the value function we can also conclude that P � 0. It
can be determined from Riccati equation (78) by initializing P (T ) = PT which
is often null.

Hamiltonian Learning with Dissipation in the Lagrangian

In addition to the classic case that has been above discussed we consider three
di↵erent cases that depend on the choice of the way we properly decay the
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Lagrangian

L(x, w, t) =
1

2
e
��(T�t)

x
0
Qx +

1

2
w

0
Rw. (83)

Hence,

H(x, p, w, t) =
1

2
e
��(T�t)

x
0
Qx +

1

2
w

0
Rw + p

0�
Ax + Bw

�
.

Then from Hw = 0 we get

Rw
? + B

0
p = 0! w

?(t) = �R
�1

B
0
p(t).

it cannot be solved “forward in time”!
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The boundary condition involves the value P (T ) that is given. Basically 1
2x

0
P (T )x =

g(x) is the final cost. It is often the case that one looks for P (T ) = 0. When
solving with respect to P we get the solution of the problem.

Asymptotical Stability of the Control Law

Now we analyze the stability of the controlled system (73). We consider the
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since Q + P̄SP̄ � 0. The asymptotical stability arises immediately in case of
Q > 0, R > 0.

solution by using Hamilton equations

Notice that we can achieve the same result when applying the characteristic
equations. When considering the Hamiltonian we have
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This can be compactly written as
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p
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(76)

When considering the circuital assumption p = Px we get ṗ = Ṗ x + Pẋ. From
the state equation Pẋ = PAx � PSPx and, therefore,

ṗ = �Qx � A
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Px = Ṗ x + PAx � PSPx. (77)

That is, for any x:

Qx + A
0
Px + Ṗ x + PAx � PSPx = 0 ! Ṗ + Q + A

0
P + PA � PSP = 0.
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Ṗ x + Pẋ
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Because of the meaning of the value function we can also conclude that P � 0. It
can be determined from Riccati equation (78) by initializing P (T ) = PT which
is often null.
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TO SUM UP

•  HJB: necessary and SUFFICIENT conditions! 

•  H equations are characteristic for the HJ PDE 

•  Links with Lagrangian approach - Pontryagin's Maximum 
Principle - PMP)

• The perspective of H Learning 

S3P-2024 - Hamiltonian Learning
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COGNIDYNAMICS: 
A THEORY OF NEURAL PROPAGATION

“Life can only be understood backwards; but 
it must be lived forwards.”

Søren Kierkegaard



HAMILTONIAN LEARNING 
AND BIOLOGICAL PLAUSIBILITY

LOCALITY IN SPACE AND IN TIME
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LEARNING IN RECURRENT NETS
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In order to simplify the notation we can overload the symbols that define the
variables ↵, ⇣, v in such a way that they also denote the index of the neurons
that represent the corresponding variable. Hence, we rewrite the Lagrangian as

L =
1

2

�
⇠
j

@ � g(xj

⇣
, ⇠

j

�
, t)

�2
+

1

2

�
ui(t) � ⇠.u(t)

�2
. (154)

We have also omitted the Kronecker delta by assuming that the function g prop-
erly collects the involved variables. It turns out that Lagrangian (154) dictates
the feature invariance principle. Like for supervised learning, we need the second
term, which represents the input that, in this case, it is the brightness.

Example 7. The Swing Problem

The swing is modeled by

(ME)

(
'̇(t) = !(t)

!̇(t) = � g

l
sin'(t) � ⇣!(t) + 1

m
µ(t),

(155)

where µ(t) is the tangential force which drives the trajectory at time t. Now
suppose we control the swing by using a neural network that is characterized
by the set N that is composed of n =

��N
�� neurons. It can be partitioned into

four sets Cµ, O', O!, O , where nµ =
��Cµ

��, n' =
��O'

��, n! =
��O!

�� and n = O .
These sets are involved in the processing of µ,',!, and  , respectively. While
O', O!, and O are the collection of neurons that are involved in the process of
observation, the set Cµ denotes the units involved in control. The neural network
provides the control signal and observes the position ' and the velocity !. This
is sketched as follows20

µ = $µ⇠µ, ' $'⇠', !  $!⇠!,   $ ⇠ (156)

Th neural model observes  ,', and ! and drives the controller with tangential
force µ = $µ⇠µ. We assume that the target value  is “perfectly” provided as a
function and that the position ' and the velocity ! are perfectly determined as
the outcome of the motion predicted by the given mechanical model of eq. (155).
When humans or robots are involved, in this task the variables are expected to
come from a visual perception. Basically the state and learning variables for
agent L are21

x ⇠ [⇠i, wip]; ✓ ⇠ [⌫ip,$ ,$',$!| {z }
$

].

In the following we distinguish the case in which $ is in fact regarded as a
learning variable for L with respect to the case in which $ is used by E for

20 In this problem ! = '̇ and, therefore, one could simply observe ' and set ! accord-
ingly.

21 It is worth mentioning that the neural network does not posses inputs in the tradi-
tional sense. We only have a graph of connections with weights ✓ip. As we can see
later, the position ' (and the velocity !) play the role of inputs by means of their
presence in the Lagrangian (see eq. (157)), but they are not present in the dynamical
system.

which holds on the horizon (0, T ). Here T > 0 can also be infinite3. We denote
by x := (⇠, flatten(w)) the overall state which contains the neural activation
⇠ and the weights associated with A. The system dynamics which drives the
weights wij is assumed by be based on the corresponding velocity ⌫̇ij , which
is properly filtered by the focus of attention functions  and !, respectively.
As it will be in remainder of the paper, this becomes of crucial importance for
the formulation of learning in the framework of optimal control. Notice that
the variables ↵i = ⌧

�1
i > 0 can be regarded as inverse of time constants ⌧i.

Basically, in the computational model of Eq. 1 we clearly recognize the di↵erent
role of parameters (⇠, w) and (↵,!, ). While the first pair describes the state,
the second triplet is about parameters that yields the process of dissipation. In
particular, ↵! ⇠ whereas (!, ) ! w.

Ideally, the recurrent neural network is expected to minimize the following
functional risk

R(⌫, T ) =

Z T

0

✓
1

2

X

i2V̄

X

j2V

mij(s)⌫
2
ij(s) + �

X

i2O

�i(s)V (⇠i(s), s)

◆
ds (2)

Here L(x, ⌫, s) = 1
2

P
i2V̄

P
j2V̄

mij(s)⌫2
ij(s) + �

P
i2O

�i(s)V (⇠i(s), s) ds is the
Lagrangian of the paired system (1). The Lagrangian is characterized by:

• The kinetic energy term K(s) = 1
2mij(s)⌫2

ij(s) of the particle (i, j) that is
characterized by the mass mij(s) defined over the time interval [0, T ].

• The potential energy of field ⇠, which is in fact a loss function V (⇠, t) =
V(⇠, e(t)). Here e(·) incorporates the information for the environmental
interactions and can be expressed by e ⇠ (u, y) (inputs and outputs).
This potential energy is linearly accumulate the error of the agents over
its output neurons, which contribute according to the weight �i(t), that
are referred to as the conscious functions. The term describes the role of
�i(t) in terms of what action is taken. We assume that an action can be
identified at time t whenever we consider a subset

A (t) ⇢ O : �i(t) > ✏.

Here,✏ > 0 is a threshold which makes it possible to select on which output
the agent is conscious, namely when the it checks the corresponding loss
term defined by the potential V (⇠t, t).

However, �i(t) is attached to all neurons i 2 V̄, which will be shown to
play an important role in the overall learning process.

• Variable � 2 �1, +1 is set to +1 in the formulation of learning. As it will
be seen in the following, when � = �1 the functional becomes a Cognitive
Action and drives crucial analysis in the following formulation of learning.

3
For the sake of simplicity, in the remainder of the paper we will sometimes drop the

temporal dependence of the variables.

3

process one single sequence which corresponds with the agent life. Learning is
regarded as an optimization problem of a functional risk that arises from the
environmental information over the agent life. We use the mathematical appa-
ratus of Dynamic Programming and Optimal Control to approach the problem.
We show that the distinctive spirit of learning springs out from the need to
solve the Hamilton equations by Cauchy initialization, just like in most related
problems of Theoretical Physics. Interestingly, the explicit dependence on time
of the Hamiltonian, which reflects the interaction with the environment, leads
to the problem of devising approximations of the optimal solution that can only
be given by imposing boundary conditions2.

This paper shows that minimization of the functional risk with given bound-
ary conditions can be approximated by using Cauchy conditions, which opens
the doors to truly on-line computational schemes. We analyze the system dy-
namics behind learning in terms of energy exchange. The main result is that
learning can only take place if we properly introduce appropriate focus of at-
tention mechanisms, that turn out to play a crucial role in order to control the
energy accumulation in the agent. The theory suggests that the agent must
be gradually exposed to the environment, that is an appropriate filtering of the
information must take place in order to prevent unstable behavior. This seems
to interpret also many results from developmental psychology which clearly in-
dicate that the above mechanisms takes place in children [5, 6].

2 Learning in the temporal dimension

We consider a continuous-time model of recurrent neural networks whose neu-
rons are labeled by natural numbers N. Some of the neurons are reserved to
model the interactions with the environment, where others are hidden. Basi-
cally, V = I [ H [ O, where I is the set of input units and H is the set of
hidden neurons, and O is the set of outputs neurons. It turns out that for input
nodes, i 2 I, the corresponding neuron returns a value ⇠i that is expected to get
as close as possible to the environmental input ui. Likewise, for output units,
o 2 O, being O the set of output units, ⇠o codes an action that is expected to
optimize the agent behavior. Finally, other units ⇠h, that are characterized by
h 2 H, are hidden. We also introduce V̄ := H [ O which represents the set of
non-degenerate neurons. This set is useful also for defining the architecture of
the recurrent network which is characterized by the graph G = (V,A), where
A ⇢ V ⇥ V̄ is the set of arcs. The neural system dynamics obeys the ODE

N :

8
>>>><

>>>>:

⇠i(t) = ui(t) i 2 I
⇠̇i(t) = ↵i(t)

h
� ⇠i(t) + �

⇣P
j2V

wij(t)⇠j(t)
⌘i

i 2 V̄
ẇij(t) =  ij(t)⌫ij(t) (i, j) 2 A
wij(t) = !ij(t)wij(t) (i, j) 2 A

(1)

2
It is important to bear in mind that one can use boundary conditions only if the overall

data collection is recorded, whereas we assume that on-line processing is only permitted

beginning from initial conditions.

2

dissipative parameters
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THE HAMILTONIAN4 Optimal system dynamics

The solution of the optimal problem defined by Eq. (6) can be obtained in the
classic framework of the theory of optimal control. The Hamiltonian can be
found once we introduce

H(⇠i, wij , pi, pij , t)

= min
v

✓
1

2

X
ij

mij(t)⌫
2
ij(t) + ��i(t)V

�
⇠i, t

�

+
X

i

↵i(t)pi(t)
h
� ⇠i(t) + �

⇣X
j
!ij(t)wij(t)⇠j(t)

⌘i

+
X

ij

pij(t) ij(t)⌫ij(t)

◆
.

(15)

Hence the minimum that defines the Hamiltonian is attained at ⌫ij = �( ij(t)/mij(t))pij(t)
which means that the Hamiltonian can be computed in closed form

H(⇠i, wij , pi, pij , t) =
1

2

X
ij

 
2
ij(t)

mij(t)
p
2
ij(t) + �

X

i2O

�i(t)V
�
⇠(t), t

�

+
X

i
↵i(t)pi(t)

h
� ⇠i(t) + �

⇣ X
j
!ij(t)wij(t)⇠j(t)

⌘i
�

X
ij

 
2
ij(t)

mij(t)
p
2
ij(t).

= �
X

ij

 
2
ij(t)

2mij(t)
p
2
ij(t) +

X
i
↵i(t)pi(t)

h
� ⇠i(t) + �

⇣ X
j
!ij(t)wij(t)⇠j(t)

⌘i
.

Now if we define

�ij(t) :=
 

2
ij(t)

mij(t)
(16)

the Hamiltonian becomes

H = � 1

2

X
ij2A

�ij(t)p
2
ij(t) + �

X
i2O

�i(t)V
�
⇠(t), t

�

+
X

i2V̄
↵i(t)pi(t)

h
� ⇠i(t) + �

⇣ X
j2V

!ij(t)wij(t)⇠j(t)
⌘i

.

(17)

Remark 2. Notice that the Hamiltonian involves the parameters (↵, ,!, m,�, )
while the control action comes from vij = �( ij(t)/mij(t))wij, only. Basically
the control action only involves directly variables associated with the Lagrangian.
The optimal solution of oracle O2 only needs to respect conditions (6), that
is those variables are given but must respect asymptotic convergence. On the
opposite, in order to yield dissipation, the causal solution involves all variables.

Remark 3. A curiosity-driven process can be carried out if the intelligent agent
is expected to process also derivatives of the input, that is if there are inputs for
which

⇠̇i(t) = ui(t). (18)

In this case the Hamiltonian needs to incorporate the corresponding p · f terms,
that is

P
I

pi(t)ui(t).
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j

input

Figure 2: Compact description by the Hamiltonian of the system. Learning and inference

is driven in a new framework of optimization in the enriched space of weights (⌫, ⇣).

a related process can take place by focus of attention in specific neurons at
the right time without pre-processing on large data collections. As shown in
Fig. 2, we assume to implement this idea through appropriate gating mech-
anisms based on weights1 ⇣, which operate both on the variation of the state
x = (⇠0, w0)0 and on the loss term of the Lagrangian function. Interestingly,
the learning trajectories are related to the problem of determining the mo-
tion trajectory in Mechanics. The laws that emerge follow the minimization
of the action, which is a functional related to the empirical risk defined in
the temporal context of interest. Overall, the theory relies on the introduc-
tion of the ⇣ weights, that have also been advocated in the longstanding
discussions on biological plausibility [7]. The system dynamics illustrated in
Fig. 2 is based on two di↵erent scheme of weigt updating:

• Update of w based on ẇ = ⇣⌫ based on its velocity ⌫.
It is based on the theory of optimal control. It can be proven that this
leads to a Local SpatioTemporal Propagation (LSTP) algorithm [8]2,

1
It is noteworthy that, although in a di↵erent context, gating techniques have already

been successfully used in LSTMs [6].
2
It is also included in Annex 1.
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LEARNING IN THE TEMPORAL DIMENSION

B2 NARNIAN

action is typically referred to as the Principle of Least Action [11], in general
the motion trajectory corresponds with a stationary point of S(x). We notice
that while in Mechanics is the velocity v of the particle to control its motion,
the formulation of learning involves the prediction ⇠ of the output of a neural
network and a sort of velocity ⌫ of the weights of the synaptic connections
(see Fig. 2). While the initial teleological assumption in Mechanics which
led to think of “Least Action” is currently rejected because of the arguable
formulation of an objective for a single particle, an intelligent agent is in
fact interacting with the environment by specific objectives3.

What is the relationship between laws of motion in Mechanics and
cognitive laws? What is the meaning of the di↵erent signs of � and
� ? Why the action in Mechanics must be stationary, whereas the
proposed related formulation of learning involves a related cognitive
action that must be minimized.

1.1

1.2 Neural Propagation by Hamiltonian Learning

HAMILTONIAN EQUATIONS
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ṗi = �si↵i�iV�i + si↵ipi � si

�

��ch[i]

↵��
�(a�)w�ip�

<latexit sha1_base64="cOb1qRYXmR24IZ7JDw3Uz/w55l0="></latexit>
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Energy-Driven 
Heuristics

Figure 2: Local SpatioTemporal Propagation scheme from Hamilton eqs.

This research project starts from the fundamental assumption that the pro-
tagonism of time is not a prerogative of Biology, but that instead time can
play the leading role also in artificial systems in a common framework of
information-based laws of learning. The driving idea is that the Least Ac-
tion Principle, expressed as an optimal control problem by Eq. 1, has a dual
Least Cognitive Action Principle based on the corresponding Lagrangian
(see Fig. 1). While in Statistical Machine Learning we minimize the func-
tional risk, in this temporal setting, the cognitive action plays the same role

3
In the following, the objective of each task of the project will be boxed.
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process one single sequence which corresponds with the agent life. Learning is
regarded as an optimization problem of a functional risk that arises from the
environmental information over the agent life. We use the mathematical appa-
ratus of Dynamic Programming and Optimal Control to approach the problem.
We show that the distinctive spirit of learning springs out from the need to
solve the Hamilton equations by Cauchy initialization, just like in most related
problems of Theoretical Physics. Interestingly, the explicit dependence on time
of the Hamiltonian, which reflects the interaction with the environment, leads
to the problem of devising approximations of the optimal solution that can only
be given by imposing boundary conditions2.

This paper shows that minimization of the functional risk with given bound-
ary conditions can be approximated by using Cauchy conditions, which opens
the doors to truly on-line computational schemes. We analyze the system dy-
namics behind learning in terms of energy exchange. The main result is that
learning can only take place if we properly introduce appropriate focus of at-
tention mechanisms, that turn out to play a crucial role in order to control the
energy accumulation in the agent. The theory suggests that the agent must
be gradually exposed to the environment, that is an appropriate filtering of the
information must take place in order to prevent unstable behavior. This seems
to interpret also many results from developmental psychology which clearly in-
dicate that the above mechanisms takes place in children [5, 6].

2 Learning in the temporal dimension

We consider a continuous-time model of recurrent neural networks whose neu-
rons are labeled by natural numbers N. Some of the neurons are reserved to
model the interactions with the environment, where others are hidden. Basi-
cally, V = I [ H [ O, where I is the set of input units and H is the set of
hidden neurons, and O is the set of outputs neurons. It turns out that for input
nodes, i 2 I, the corresponding neuron returns a value ⇠i that is expected to get
as close as possible to the environmental input ui. Likewise, for output units,
o 2 O, being O the set of output units, ⇠o codes an action that is expected to
optimize the agent behavior. Finally, other units ⇠h, that are characterized by
h 2 H, are hidden. We also introduce V̄ := H [ O which represents the set of
non-degenerate neurons. This set is useful also for defining the architecture of
the recurrent network which is characterized by the graph G = (V,A), where
A ⇢ V ⇥ V̄ is the set of arcs. The neural system dynamics obeys the ODE

N :

8
>>>><

>>>>:

⇠i(t) = ui(t) i 2 I
⇠̇i(t) = ↵i(t)

h
� ⇠i(t) + �

⇣P
j2V

wij(t)⇠j(t)
⌘i

i 2 V̄
ẇij(t) =  ij(t)⌫ij(t) (i, j) 2 A
wij(t) = !ij(t)wij(t) (i, j) 2 A

(1)

2
It is important to bear in mind that one can use boundary conditions only if the overall

data collection is recorded, whereas we assume that on-line processing is only permitted

beginning from initial conditions.

2

Forw
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ard

parents
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2 Alessandro Betti and Marco Gori

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8

Fig. 1. Forward and backward wave on a ten-level network when the input and the
supervision is kept constant.

feedback weights can support error backpropagation. However, any interpreta-

tion which neglects the role of time might not fully capture the essence of bio-

logical plausibility. The intriguing marriage between energy-based models with

object functions for supervision that gives rise to Equilibrium Propagation [11]

seems to be better suited to capture the role of time. Based on a full trust on

the tole of temporal evolution, in [1], the authors proposed the formulation of

learning under the framework of laws of nature derived from variational prin-

ciples. This paper springs out from recent studies especially on the problem of

learning visual features [4, 5, 2] and it was also stimulated by a nice analysis on

the interpretation of Newtonian mechanics equations in the variational frame-

work [9].

This paper shows that when looking for laws of learning more than from

learning algorithms, one can clearly see the emergence of the biological plau-

sibility of Backprop, an issue that has been controversial since its spectacular

impact. We claim that the algorithm does represent a sort of degenerate pro-

cess of a natural spatiotemporal di↵usion process that can clearly be understood

when thinking of perceptual tasks, like speech and vision, where signals possess

smooth properties. In those tasks, instead of performing the forward-backward

scheme for any frame, one can properly spread the weight update according to a

di↵usion scheme. While this is quite an obvious remark on parallel computation,

the disclosure of the degenerate di↵usion scheme behind Backprop, sheds light on

its biological plausibility. This is especially important at the light of recent dis-

coveries on the underlining di↵usion process that characterizes neural networks

with any pattern of interconnections, including cyclic links [3]. The learning pro-

cess that emerges in this framework is based on complex di↵usion waves that,

however, is dramatically simplified under the feedforward assumption, where the

propagation is split into forward and backward waves.

This is all that is needed to write down Hamilton’s equations:

Proposition 1. For all t 2 (0, T ) the following Hamilton’s equations holds true
8
>>>>>>>>>>>><

>>>>>>>>>>>>:
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h
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pij(t);

ṗi(t) = � s��i(t)V⇠i(⇠(t), t) + s↵i(t)pi(t)

� s

X
2ch[i]

↵(t)!i(t)�
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⇣X
j2pa[]
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ṗij(t) = �s↵i(t)!ij(t)�
0

⇣X
m

wim(t)⇠m(t)
⌘
pi(t)⇠j(t).

(17)

Here we assume that s = ±1, that is s = 1 for determining the oracle O2

solution, whereas s = 1 for the causal agent. In the reminder of the paper
we will use the notation ai(t) =

P
j2pa[i] !ij(t)wij(t)⇠j(t) to denote the static

activation of the neurons. 4

The optimal solution can be obtained by solving the above ODE under the
boundary conditions:

x
?(0) = x0, p

?(T ) = pT = 0. (18)

The system dynamics defined by Eq. (17) exhibits locality both in time and space,
a property which has given rise to a longstanding discussion in the community
of Machine Learning. The learning algorithms for recurrent neural networks
are in fact mostly clustered under two di↵erent algorithmic frameworks that
come from Backpropagation Through Time (BPTT) and Real Time Recurrent
Learning (RTRL) [8, 10]. Interestingly, BPTT is local in space, but not in
time, whereas RTRL is local in time but not in space. However, the appeal of
spatiotemporal locality which is possessed by Eq. 17 will become relevant only
when we will provide evidence that we can solve those ODE equations under
Cauchy conditions according to the approximation stated by a causal agent.

5 Energy-driven causal agents

In this section we start thinking of the causal agent. We carry out an analysis
which driven by the consequences of bounding the Hamiltonian. Since it de-
pends on the state and on the costate, we discuss their boundedness separately.

5.1 Boundedness of the state ⇠i

We begin stating a proposition on the BIBO stability of the recurrent neural
network model described by ODE 1 which comes from classic result of System
Theory that is stated in the following Lemma.

4
This notation hides the ⇠ and w dependence, so it should be used with due care.
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This is all that is needed to write down the following Hamilton’s equations of
learning:

Proposition 1. For all t 2 (0, T ) the following Hamilton’s equations holds true
8
>>>>>>>>>><

>>>>>>>>>>:

[i] ⇠̇i(t) = ↵i(t)
h

� ⇠i(t) + �

⇣X
j2pa[i]

!ij(t)wij(t)⇠j(t)
⌘i

;

[ii] ẇij(t) = ��ij(t)pij(t);

[iii] ṗi(t) = � si(t)�i(t)V⇠i(⇠(t), t) + si(t)↵i(t)pi(t)

� si(t)
X

2ch[i]
↵(t)!i(t)�

0

⇣X
j2pa[]

!j(t)wj(t)⇠j(t)
⌘
wi(t)p(t);

[iv] ṗij(t) = �si(t)↵i(t)!ij(t)�
0

⇣X
m

wim(t)⇠m(t)
⌘
pi(t)⇠j(t).

(10)

Here we assume that ṗ = sHx, where si(t) = ±1. This is one of the char-
acteristic equation of the Hamilton-Jacobi-Bellman equations (see Section A in
the Appendix) where si(t) = 1. Interestingly, when flipping si(t), the corre-
sponding equation gives rise to an important system dynamical behavior based
on dissipation which favor convergence. The optimal solution can be obtained
by solving the above ODE under the boundary conditions:

x
?(0) = x0, p

?(T ) = pT = 0. (11)

Now we show that we can provide a simple straightforward description of
the evolution of the weights. We begin with the introduction of the another
dissipation parameter ✓ij to facilitate such a description.

Definition 1. The real number

✓ij :=
ṁij

mij
� 2

 ̇ij

 ij
(12)

is referred to as a joint dissipation factor.

Here, “joint” means that, like for �ij also ✓ij involves dissipation that arises from
both the model and the Lagrangian. Interestingly ✓ij and �ij are intimately
related.

Lemma 2. The dissipation parameter �ij evolves according to

�ij(t) = �ij(0) · exp �
Z t

0
✓ij(s)ds (13)

Proof. The proof can be promptly driven from the above the definition of �ij .
We have

�̇ij =
d

dt

 
2
ij

mij
=
 

2
ij

mij

 
2
 ̇ij

 ij
� ṁij

mij

!
= �

 
2
ij

mij
✓ij = ��ij✓ij . (14)

Then the thesis arises directly from the integration of the ODE.
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Hamiltonian function. It can be determined by considering the function

H(⇠i, wij , pi, pij , t)

= min
v

✓
1

2

X
ij

mij(t)⌫
2
ij(t) + �i(t)V

�
⇠i, t

�

+
X

i

↵i(t)pi(t)
h

� ⇠i(t) + �

⇣X
j
!ij(t)wij(t)⇠j(t)

⌘i

+
X

ij

pij(t) ij(t)⌫ij(t)

◆
.

(6)

Hence the minimum that defines the Hamiltonian is attained at ⌫ij = �( ij(t)/mij(t))pij(t)
which means that the Hamiltonian can be computed in closed form

H(⇠i, wij , pi, pij , t) =
1

2

X
ij

 
2
ij(t)

mij(t)
p
2
ij(t) +

X

i2O

�i(t)V
�
⇠(t), t

�

+
X

i
↵i(t)pi(t)

h
� ⇠i(t) + �

⇣ X
j
!ij(t)wij(t)⇠j(t)

⌘i
�

X
ij

 
2
ij(t)

mij(t)
p
2
ij(t).

= �
X

ij

 
2
ij(t)

2mij(t)
p
2
ij(t) +

X
i
↵i(t)pi(t)

h
� ⇠i(t) + �

⇣ X
j
!ij(t)wij(t)⇠j(t)

⌘i
.

Now if we define

�ij(t) :=
 

2
ij(t)

mij(t)
(7)

the Hamiltonian becomes

H = � 1

2

X
ij2A

�ij(t)p
2
ij(t) +

X
i2O

�i(t)V
�
⇠(t), t

�

+
X

i2V̄
↵i(t)pi(t)

h
� ⇠i(t) + �

⇣
ai(t)

⌘i
.

(8)

Remark 4. A curiosity-driven process can be carried out if the intelligent agent
is expected to process also derivatives of the input, that is if there are inputs for
which

⇠̇i(t) = ui(t). (9)

In this case the Hamiltonian needs to incorporate the corresponding p · f terms,
that is

P
I

pi(t)ui(t).

Since we have an explicit formula for H we can directly compute the gradi-
ents of the function. In particular we have that

Lemma 1. For all t > 0 we have

H⇠i = �iV⇠i(⇠, t) � ↵ipi +
X

2ch[i]
↵!i�

0

⇣X
j2pa[]

!jwj⇠j

⌘
wip;

Hwij = ↵i!ij�
0

⇣X
m2pa[i]

!imwim⇠m

⌘
pi⇠j ;

Hpi = ↵i

h
� ⇠i + �

⇣ X
j
!ijwij⇠j

⌘i
;

Hpij = ��ijpij .
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This leads to the following important result:

Corollary 1. If ✓ij(t) > 0 then �̇ij(t) < 0 and �ij(t) > 0.

Proposition 2. Second-order weights evolution

The Hamiltonian evolution dictated by Eqs. 10 leads to the following second-
order direct interpretation of their dynamics

ẅij + ✓ijẇij + �ij ṗij = 0. (15)

Proof. The proof comes straightforwardly if we di↵erentiate with respect to time
of the second of the Hamilton equations 10 when using Eq. 14 and Definition 1.

Generalized Gradient rs
⇣

Eq. 10 -[ii] and eq. 15 gives a straightforward expression for the evolution of the
weights. However, while Eq. 10 -[ii] connects the evolution of the weights to pij ,
eq. 15 yields a direct involvement of ṗij . Interestingly, eq. 10 -[iii] and eq. 10
-[iv] can be thought of a generalized gradients based on loss V . In the first one,
if we introduce rs

⇣V[0,t) such that ẇij = ��ijrs
⇣V we can interpret rs

⇣V as
the the driving gradient of the system dynamics. Moreover, this gradient-based
interpretation leads to conclude that

rs
⇣V[0,t) :=

Z t

0

�
s � ! � p⇠ � ⇠

�
(⌧)d⌧. (16)

Since, the system dynamics of eq. 10 -[iv] involves ṗij the corresponding gradient
descent interpretation arises when the defining the generalized gradient by

rs
⇣V (t) :=

�
s � ! � p⇠ � ⇠

�
(t) (17)

Hamiltonian Learning and Spatiotemporal Locality

The system dynamics defined by Eq. (10) exhibits locality both in time and space,
a property which has given rise to a longstanding discussion in the community
of Machine Learning. The learning algorithms for recurrent neural networks
are in fact mostly clustered under two di↵erent algorithmic frameworks that
come from Backpropagation Through Time (BPTT) and Real Time Recurrent
Learning (RTRL) [18, 25]. Interestingly, BPTT is local in space, but not in
time, whereas RTRL is local in time but not in space. However, the appeal of
spatiotemporal locality which is possessed by Eq. 10 will become relevant only
when we will provide evidence that we can solve those ODE equations under
Cauchy conditions according to the approximation stated by a causal agent.

15
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for t in range(n-1):
        #
        # Hamilton's statiotemporal propagation
        #
        p_x_dot[t,0] =  q * (z[t] - x[t,0]) * gamma[t]
        for i in range(m):
                x_dot[t,i] = SignFlip[t]*(-x[t,i]+Sigma(f[i]))                                             
                x[t+1,i] = x[t,i] + tau*x_dot[t,i]
                p_b_dot[t,i] = - SignFlip[t]*(DSigma(f[i])*p_x[t,i]*u[t] + r_0w*b[t,i])
                p_b[t+1,i] = p_b[t,i] + tau*p_b_dot[t,i] 
                p_x_dot[t,i] = p_x_dot[t,i] + p_x[t,i] - r_0x * x[t,i]
                b_dot[t,i] = -SignFlip[t]*p_b[t,i]/r_w
                b[t+1,i] = b[t,i] + tau*b_dot[t,i]
                for j in range(m):
                        f[i] +=  w[t,i,j]*x[t,j]
                        p_x_dot[t,i] = p_x_dot[t,i] - DSigma(f[i])*p_x[t,j]*w[t,j,i]                       
                        p_w_dot[t,i,j] = - SignFlip[t]*(DSigma(f[i]) *p_x[t,i]*x[t,j] + r_0w*w[t,i,j])       
                        p_w[t+1,i,j] = p_w[t,i,j] + tau*p_w_dot[t,i,j]
                        w_dot[t,i,j] = -SignFlip[t]*p_w[t,i,j]/r_w                                                      
                        w[t+1,i,j] = w[t,i,j] + tau*w_dot[t,i,j]
                p_x_dot[t,i] = SignFlip[t]*p_x_dot[t,i]
                p_x[t+1,i] = p_x[t,i] + tau*p_x_dot[t,i]

response

target

“forward”
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This proposition states that the decrement of the co-state kinetic term
(1/2)p2

w takes place if and only if the co-state pw and the generalized gradi-
ent rs

⇣V are correlated. As shown below we can also related the progress of
learning in terms of the evolution of ẇ and ṗ.

Proposition 9. The velocities of the state w and co-state pw are correlated if
and only if the square of the co-state decreases, that is

hẇ, ṗi = ẇ · ṗ > 0 $ d

dt
p
2
w < 0. (26)

Proof. The proof is straightforward. From Hamiltonian equation ẇij = ��ijpij

we get

ẇij ṗij = ��ijpij ṗij = ��ij
1

2

d

dt
p
2
ij .

Hence, the proof follow when considering that �ij > 0.

Unlike the local decrement of p
2
⇠ the case of pw leads to an additional im-

portant result.

Proposition 10. When using a policy that guarantees that ṗij < 0 then the
learning process ends up into constant weights wij, that is limt1 pij(t) = 0.

Proof. When d/dt(p2
ij) ! 0 then ṗij ! 0. From Proposition 2 we get ẅij +

✓ij ✓̇ij = 0 which, in turns, leads to achieve constant solutions for wij . Now, if
�ij 6= 0, for the Hamiltonian learning 10-iv we get wij ! 0.

7 Energy balance

Now we carry out a classic analysis on the energy balance coming from the
interaction of the agent with the environment. We begin considering the con-
tribution Ht. In case si(t) ⌘ 1 we have Hx · ẋ + Hp · ṗ = 0, which leads to
Ḣ = (d/dt)H = Ht.

Definition 2. The terms

E :=

Z t

0
�i(⌧)Vs(⇠i(⌧), ⌧)d⌧

D := D� + D� + D↵ + D!

(27)

are referred to as the environmental energy and the dissipated energy, respec-

20

tively, where

D� := �
Z t

0
�̇i(⌧)V (⇠i(⌧), ⌧)d⌧

D� :=
1

2

Z t

0

X
ij
�̇ij(⌧)p

2
ij(⌧)d⌧

D↵ := �
Z t

0

X
i2V̄

↵̇i(⌧)pi(⌧)
h
� ⇠i(⌧) + �

�
ai(⌧)

�i
d⌧

D! := �
Z t

0

X
i2V̄

↵i(⌧)pi(⌧)�
0
�
ai(⌧)

� X
j
!̇ij(⌧)wij(⌧)⇠j(⌧)d⌧

(28)

The dissipation energy arises because of the temporal changes of ↵i, ij , mi,�i,
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The dissipation energy arises because of the temporal changes of ↵i, ij , mi,�i,
even though the role of  ij is replaced with �ij .

Theorem 1. - I Principle of Cognidynamics
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Figure 4: Energy-driven heuristics to yield gradual focus of attention.

with the optimal control policy defined by ⌫. To some extent the temporal
evolution of ⇣ reflects the emergence of cognitive patterns of attentional fo-
cus. In fact, the disabling of the state (⇠0, w0)0 leads to ignoring information
that, in certain phases of cognitive development, is elusive. The focusing
pattern manifests itself not only on output neurons but also on hidden neu-
rons. It is interesting to note that this corresponds to a dilation/contraction
of time and that, as noted, it occurs for every neuron, at every instant of
time.

The role of  and ↵ is dual with respect to disabling the evolution of
the state. What are related biological issues? Is the active/inhibited
biological property somewhat related? What is the role of pruning
portions of the net by !? Is gating on both the network and the La-
grangian somewhat connected with SGD on large data collections?

2.1

2.2 Energy-driven heuristics
The mathematical apparatus that is used in this project leads to state a
fundamental result concerning the system dynamics that is framed in the
principle of conservation of energy [12]. The system dynamics evolves under
the energy balance

E = �H + D. (2)

This formal statement is derived from Hamiltonian equations and follows
the spirit of the energy conservation principle. The environmental energy E

turns out to be exchanged with the agent in terms of the variation of the
internal energy �H and dissipated energy D. We can see that any process of
learning corresponds an energy dissipation (term D). This result is aligned
with issues connected with the Cauchy’s solution of the boundary problem of
learning. In general, when performing on-line forward solution of Hamilto-
nian equations we end up into unstable configurations. This is well-known
also in classic LQ control problem, when we solve the associated Riccati
ODE equation. These issues of unstable dynamics are also quite popular

9
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CONSCIOUSNESS ISSUES 

B2 NARNIAN

note, however, that while the interaction protocol of LLMs is immediately
identified by the segmentation of the heosi symbol, the temporal interac-
tion conceived throughout the life of the agent at di↵erent moments of its
cognitive development must respond to higher-level questions. In partic-
ular, NARNIAN agents must decide when to act in the environment and
modulate the extent of their actions. Somehow, they must become aware of
the context in which they operate in order to act in a way that optimizes
behavioral indices that are not limited to measuring only the e↵ectiveness
on a single task. Fig. 5 gives an idea of the architecture that will be in-
vestigated to handle those consciousness issues. A natural solution arises
which consists of controlling the overall agent behavior by an appropriate
consciousness module that is expected to use exactly the same theory of
the optimization module described so far. It is in fact the responsibility of
the conscious module to modify the Lagrangian function, the optimization
module, and control the response according to high level environmental in-
teractions.

consciousness  
module

Lagrangian  
module

Optimization 
module

genetic objectives environmental 
information

conscious control

self-conscious control

response

Figure 5: Architecture to handle consciousness: The Lagrangian function, the optimiza-

tion module, and the response are properly controlled at a higher level of abstraction by

the consciousness module.

3.1 Lagrangian descriptions and invariances
The potential term of the Lagrangian is the dual of the loss function. The
solution of cognitive tasks can be formulated through a specific linguistic
description of the loss function. Furthermore, invariance conditions can be
explicitly expressed which, in the classic context of machine learning, give
rise to unsupervised learning (see e.g. invariance for visual tasks [16]). How-
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WAVE PROPAGATION
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MAXWELL’S EQUATIONS

Numerical Techniques for Maxwell’s Equations 3

general depend on the spatial location within the medium. If these electric
and magnetic fields (multiplied by ε and µ respectively) start out divergence
free, they will remain so when advanced forward in time by (1):
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= 0

and similarly for div (µH). This implies that the relations div (εE) = ρ (where
ρ is the local charge density) and div (µH) = 0 need not to be imposed as
additional constraints. Neither of these quantities will change during wave
propagation according to (1).

Arguably, the simplest possible finite difference approximation to (1) is
obtained by approximating each derivative (whether in space or time) by
centered second order accurate finite differences, i.e.
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µ
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µ
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(3)
In the style of (2), we can see that (3) at each grid point exactly preserves
the value of discrete analogs of div (εE) and div (µH).

2.1 Space Staggering

A key to the long-standing popularity of the Yee scheme (3) [44] is the con-
cept of grid staggering. We illustrate this first in a simpler case, viz. for the
scalar one-way wave equation ut +ux = 0. Centered approximations in space
and time, on a Cartesian grid, result in two entirely separate interlaced com-
putations over the grid points marked “x” and over those marked “o” in
Fig. 1. By computing over only one of the sets, say, the point set marked “o”,
we save a factor of two in computational effort. This also avoids trouble with

… plus divergence equations
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This paper proposes the formulation of the Inverse Source Problem (ISP) in electromagnetism

as Linear Quadratic optimal control. The adoption of the Hamiltonian framework makes it possible

to express directly the distribution of the density of current J which better approximates a given

electromagnetic target express by the pair (E,B).

1 Introduction

2 LQ formulation of the ISP

Once properly discretized, Maxwell’s equations

8
>>><

>>>:

r ·E = ⇢
✏0

(Gauss’s Law)

r ·B = 0 (Gauss’s Law for Magnetism)

r⇥E = �
@B
@t (Faraday’s Law)

r⇥B = µ0J+ µ0✏0
@E
@t (Ampère’s Law with Maxwell’s correction)

(1)

can be written as a time-continuous dynamical linear system. Suppose we are sampling E and H

over n points and denote by En(t) and Bn(t) the corresponding sampling arrays1 Let us introduce a
dynamical system based on the x(t) = (E0(t), B0(t)). The system evolves according to the following
equation:

d

dt

✓
E

B

◆
(t) =

✓
0 �Dcurl

µ0✏0Dcurl 0

◆✓
E

B

◆
(t) +

✓
0

µ0J

◆
(t)

where Dcurl represents the discretized curl operator, and J(t) is the current density (external source).
Thus, the system can be interpreted as:

ẋ(t) = Ax(t) +Bu(t) (2)

with

A =

✓
0 �Dcurl

µ0✏0Dcurl 0

◆
, B =

✓
0
µ0

◆
, u(t) = J(t).

Additionally, the system must satisfy the following divergence constraints to ensure consistency:

DdivE(t) =
⇢(t)

✏0
, DdivB(t) = 0

where Ddiv represents the discretized divergence operator. Thus, the full system of discretized Maxwell
equations includes both time evolution (curl equations) and divergence constraints. We aim to track
a desired target signal z(t) at specific spatial locations by:

y(t) := C

✓
E

B

◆
(t) = Cx(t)

1For the sake of simplicity, in the reminder of the paper the index n might be dropped.
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@B

@t
= DcurlE

@E

@t
= �DcurlB+

1

"0
J(t)

dF(t)

dt
= AF(t) + S(t)

F(t) =


E(t)
B(t)

�

A =


0 �Dcurl

Dcurl 0

�

S(t) =

 1
"0
J(t)
0

�

This LaTeX code will render the compact linear system of Maxwell’s equations, with the discrete curl
operators and source terms, in matrix form.

DdivE =
⇢

"0

DdivB = 0

DcurlE = �
@B

@t

DcurlB = µ0J+ µ0"0
@E

@t

Let us introduce a dynamical system based on the x(t) = (E0(t), B0(t)). The system evolves
according to the following equation:

d

dt

✓
E

B

◆
(t) =

✓
0 �Dcurl

Dcurl 0

◆✓
E

B

◆
(t) +

1

"0

✓
S

0

◆
J(t)

@B

@t
= DcurlE

@E

@t
= �DcurlB+

1

"0
J(t)

dF(t)

dt
= AF(t) + S(t)

F(t) =

✓
E(t)
B(t)

◆

A =

✓
0 �Dcurl

Dcurl 0

◆

S(t) =

✓ 1
"0
J(t)
0

◆

We formulate the ISP as the discovering of

u
? = argmin

u

Z 1

0

h
(Cx(t)� z(t))0Q(Cx(t)� z(t)) + u(t)0Ru(t)

i
dt

3
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INVERSE PROBLEM AS OPTIMAL CONTROL

where C is the measurement matrix selecting specific spatial points. We formulate the ISP as the
discovering of

u
? = argmin

u

Z 1

0

h
(Cx(t)� z(t))0Q(Cx(t)� z(t)) + u(t)0Ru(t)

i
dt

subject to the nonholonomic constraint 2. The solution is obtained by solving the Algebraic Riccati
Equation (ARE):

A
0
P + PA� PBR

�1
B

0
P + C

0
QC = 0

The optimal control law is given by:

u(t) = �R
�1

B
0
Px(t)

This minimizes the cost function and ensures the system tracks the target z(t). It is worth mentioning
that solving the ARE might be really hard at the dimension involved in electromagnetic problems.
In the following section we propose using the Hamiltonian framework and exploit the fundamental
property of time reversibility of wave propagation which is typical of all fundamental laws of Physics.

3 LQ Optimal Control via Hamilton’s Equations

Let us introduce

H(x, u, p) :=
1

2
(Cx� z)0Q(Cx� z) +

1

2
u
0
Ru+ p

0(Ax+Bu)

where p(t) is referred to as the costate (or adjoint variable). The Hamiltonian is defined as

H(x, p) := min
u

H(x, u, p) (3)

which yields
u
? = argminH(x, u, p) = �R

�1
B

0
p. (4)

Hence, the Hamiltonian is

H(x, p) =
1

2
(Cx(t)� z(t))0Q(Cx(t)� z(t))�

1

2
p
0
Sp, (5)

where S = BR
�1

B
0. Hamilton’s equations are as follows:

ẋ(t) = Ax(t)� Sp(t)

ṗ(t) = �C
0
Q
�
Cx(t)� z(t)

�
�A

0
p(t)

(6)

In general, solving the system involves forward integration of the state equation and backward inte-
gration of the costate equation, subject to appropriate boundary conditions. Basically we need to
impose (

x(0) = x0

p(1) = 0.
(7)

Now let us consider any interval [0, T ] with T < 1. Since Maxwell’s equations are reversible, if
z(t) = z(T � t) then Hamiltonian’s equations 6 are symmetric w.r.t. to [0, T ] and, therefore, we can
solve the ODE forwardly by using Cauchy’s initialization.

From Hamilton’s equation of the co-state we get

�R
�1

B
0
ṗ(t) = R

�1
B

0
C

0
Q
�
Cx(t)� z(t)

�
+R

�1
B

0
A

0
p(t) (8)

No, Dcurl is antisymmetric and, therefore, also A = �A
0 and, since B and R > 0 are symmetric we

have (R�1
B

0
A

0)p = (AR
�1

B
0)0 �Au. Finally, if R is diagonal we have

u̇(t) = A
0
u(t) +R

�1
B

0
C

0
Q
�
Cx(t)� z(t)

�
(9)

We are now ready to state the following theorem:

Theorem 1. The LQ formulation of ISP corresponds with inverting Maxwell’s equations 2 into the
reciprocal linear system 9 which returns the current density J on the basis of the given electromagnetic
target expressed over a finite collection of pairs x = (E,B).
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ẋ(t) = Ax(t)� Sp(t)
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HAMILTONIAN SOLUTION
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Stimulation of fresh ideas

• Regulated access to data collections and the challenge of 
CollectionLess AI - emphasis on environmental interactions

• Learning theory inspired from Theoretical Physics;  a pre-
algorithmic step: Cognitive Action, natural laws vs algorithms)

• Hamiltonian Learning  and dissipation

• Local SpatioTemporal Propagation (LSTP) as a proposal to 
replace Backpropagation in “temporal learning environments”

• Electromagnetic wave propagation

51

CONCLUSIONS



Stimulation of fresh ideas

52

HIRING AT SAILAB 
on Collectionless AI

Two postdoc positions

2 years (50 KEuro/year)


