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Far better an approximate answer to the right question, which is often vague, 
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THE PATH OF ARTIFICIAL 
INTELLIGENCE 

my own view



WHERE THE QUALITY OF  “ARTIFICIAL INTELLIGENCE” 
CAN EXCEED  HUMAN INTELLIGENCE!
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the greedy policy of following the minimum distance … and beyond!

distance: number of tiles which are not in their correct positions
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2007 
RAI 3 report on  SAILAB challenge on Rubik’s cube



Cracking a crossword 
puzzle

Answering all 
the clues

Generating for each clue 	a 
long list of candidate 
answers

Filling the 
puzzle grid

Putting the best combination 
of answers into the grid 

CRACKING CROSSWORDS
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AI  
THE BREAKTHROUGH OF 

CONNECTIONISM - PDP research group
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FIGURE 5.18

Data flow computation: The input is applied at the first layer (A). It is then propagated
forward to the second (B), third (C), and fourth (D) layer, which contains the output.

the derivative is preferable21 with respect to the asymmetric approximation σ (1)(a) ≃
(σ (a+h)−σ (a))/h. However, no matter what numerical algorithm is used, it cannot
reach the perfect expression Clearly, the

concrete
computation
always produces
roundoff errors.

achieved by the symbolic computation (5.5.78), once we
know σ (a). Interestingly, this difference between symbolic expression and numerical
computation of the gradient has an impact not only on the precision. When dealing
with high dimensional problems, there is in fact a fundamental impact on computa-
tional complexity.

Numerical gradient
is O(m2).

Suppose use a numerical computation of the gradient, where any of its compo-
nents ∂e/∂wij is computed using the idea sketched in Eq. (5.5.79). Hence

∂e

∂wij
← e(wij + h, v, y) − e(wij + h, v, y)

2h
. (5.5.80)

Let N = (V ,A ) be a feedforward network. According to the above equation, the
computation of ∂e/∂wij requires three floating-points operations. However, since we
are interested in an asymptotical analysis, we can promptly see that we are reduced
to determining the complexity of computing e(w, v, y) that, in turn, is reduced to
establishing the complexity of the computation of f(w, v).

Data flow
computation.

Fig. 5.18 shows how such a computation takes place in a feedforward network
with two hidden layers. First (see (A)) the input is applied to the inputs (grey level,
units 1, 2). Then it is propagated forward to the second (B), third (C), and fourth layer
(D) (output). Any of the three forward computations, which construct the outputs of
the two hidden layers (B, C) and of the output (D), require (asymptotically) as many
floating-point operations as the number of connections with the previous layer. For
example, on layer (B), we need to compute xi = σ (wi1x1 + wi2x2 + bi) for every
i = 3, . . . , 7. When considering a neural network as simple as this, modeling the cost

21Notice that we can use also numerical schemes with precision better than the one achieved
by (5.5.79). For example, if we keep five instead of three samples, we get the O(h4) approximation

σ (1)(a) = −σ (a + 2h) + 8σ (a + h) − 8σ (a − h) + σ (a − 2h)

12h
+ h4

30
σ (5)(ã).
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Why not to use classic numerical schemes?
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networks are sometimes applied in problems where m is on the order of millions!
The numerical computation of the gradient in those cases would require teraflops.
This is a remarkable computational burden when considering that this is only for the
computation of the gradient associated with a single pattern! As we will see, Back-
propagation is a clever algorithm to dramatically cut this bound to O(m).

Backpropagation
costs Θ(m).

In order to come up with a solution to compute the gradient smarter than based
on Eq. (5.5.80), one should realize that the same forward step is repeated for all the
weights m times, and we do not capitalize from previous computations. Let us attack
the problem by analytically expressing the gradient with symbolic manipulations. We
start noticing that

∂e

∂w
= ∂V

∂f
· ∂f

∂w
=

∑

o∈O

∂V

∂fo

∂fo

∂w
. (5.5.81)

Whenever we are given a symbolic expression for V (y, f(w, v)), the first term in
Eq. (5.5.81) can also be given a corresponding symbolic expression. For example,23

in case V (y, f ) = 1
2 (y −f )2, we have ∇f V = y −f and, therefore, its computation

requires a forward step to determine f(w, v). The symbolic expression of ∂f/∂w can
be gained if we exploit the DAG structure of feedforward nets. Consider the derivative
of fo(w, v) with respect to the (i, j)th weight wij , and call this quantity go

ij ; by using
the chain rule, we get

go
ij = ∂xo

∂wij
= ∂xo

∂ai

∂ai

∂wij
= ∂xo

∂ai

∂

∂wij

∑

h∈pa(i)

wihxh = δo
i xj , (5.5.82)

where we have defined δo
i := ∂xo/∂ai . This definition, which is motivated by the

computation of go
ij , can be generalized when considering the transfer of the activation

ai onto the unit j . That is, we can replace δo
i with δ

j
i by assuming that the role of

o ∈ O is moved to j ∈ H . Clearly, δ
j
i = 0 whenever i ≻ j . We can immediately

determine the gradient with respect to the bias, since24 ∂xo/∂bi = δo
i . The term δo

i is
referred to as the delta error.

Backward step.Let m ∈ O be the index of an output neuron. Then, by definition, the delta error
is different from zero only when m = o, and in that case we have

δo
o = σ ′(ao). (5.5.83)

For asymmetric sigmoidal functions, from Eq. (5.5.78), we get δo
o = xo(1 − xo). In

case of symmetric sigmoidal functions σ (a) = tanh(a), similarly, we have

δo
o = 1

2
(1 + xo)(1 − xo),

23Interesting cases are those in which the loss is not always differentiable in its domain.
24For the sake of simplicity, in the following discussion we will incorporate the bias as an ordinary
weight, by assuming the x has been enriched, as usual, by x̂ = (x′, 1)′.

THE “SECRET” OF 
BACKPROPAGATION 

outputs
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FIGURE 5.19

The backward step propagates recursively the delta error beginning from the output
through its children. For example, δ5 = σ ′(a5)(w85δ8 + w95δ9). Since there is only one
output, we don’t bother to write down the index o.

and related symbolic expressions can be found for other LTU units that directly in-
volve the value of xo. Basically, once the forward step has been completed and xo is
known, we can compute δo

o directly. If i ∈ H is the index of any hidden unit then δo
i

cannot be directly expressed like for the case of output units. However, by using the
chain rule we have

δo
i = ∂xo

∂ai
=

∑

h∈ch(i)

∂xo

∂ah

∂ah

∂xi

∂xi

∂ai
= σ ′(ai)

∑

h∈ch(i)

whiδ
o
h. (5.5.84)

Eqs. (5.5.83) and (5.5.84) allow us to determine δo
i by propagating backward the

values δo
o throughout the hidden units i ∈ H . This is shown in Fig. 5.19, where we

can see the recursive propagation based on the children of the output.25

Now suppose that instead of the derivative of each output xo we want to calculate
the derivative of the loss V with respect to the generic weight wij . We immediately
realize that we can follow the steps outlined above since we can exploit the chain rule

∂V

∂wij
= ∂V

∂ai

∂ai

∂wij
= δixj ,

where this time δi is simply ∂V/∂ai . As before, after the forward phase, we can
immediately evaluate the δi for i ∈ O once we know the symbolic expression of V ;
for example, in case of quadratic loss V (y, f ) = 1

2 (y − f )2, then δo = (σ (ao) −
yo)σ

′(ao). Of course, we can recursively evaluate all the other δi using an analogue
of Eq. (5.5.84),

δi =
∑

h∈ch(i)

∂V

∂ah

∂ah

∂xi

∂xi

∂ah
= σ ′(ai)

∑

h∈ch(i)

whiδh.

25Since δo
i is needed in Eq. (5.5.82) for the gradient computation, we can immediately see that there is

no propagation throughout the inputs.
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Backward step

“magic factorization”: this is why we have 
O(M) floating-point operation!

What about computing the gradient with
billion of weights?
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BP, BIOLOGICAL PLAUSIBILITY 
AND THE ROLE OF TIME

LOD 2020 Workshop on 
Biologically Plausible Learning 

14:55- 15:00 Alessandro Sperduti,“Introduction”

15:00 – 15:30 Tomaso Poggio, “Towards new foundations for machine learning”

15:30 – 16:00 Yoshua Bengio, “Equilibrium Propagation”

16:00 – 16:30 Naftali Tishby, “Local Information Bottleneck optimization as a Biologically plausible feedforward learning mechanism”
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How Important Is Weight Symmetry in Backpropagation?

Qianli Liao and Joel Z. Leibo and Tomaso Poggio
Center for Brains, Minds and Machines, McGovern Institute

Massachusetts Institute of Technology
77 Massachusetts Ave., Cambridge, MA, 02139, USA

Abstract

Gradient backpropagation (BP) requires symmetric feedfor-
ward and feedback connections—the same weights must be
used for forward and backward passes. This “weight trans-
port problem” (Grossberg 1987) is thought to be one of the
main reasons to doubt BP’s biologically plausibility. Using
15 different classification datasets, we systematically investi-
gate to what extent BP really depends on weight symmetry.
In a study that turned out to be surprisingly similar in spirit to
Lillicrap et al.’s demonstration (Lillicrap et al. 2014) but or-
thogonal in its results, our experiments indicate that: (1) the
magnitudes of feedback weights do not matter to performance
(2) the signs of feedback weights do matter—the more con-
cordant signs between feedforward and their corresponding
feedback connections, the better (3) with feedback weights
having random magnitudes and 100% concordant signs, we
were able to achieve the same or even better performance
than SGD. (4) some normalizations/stabilizations are indis-
pensable for such asymmetric BP to work, namely Batch Nor-
malization (BN) (Ioffe and Szegedy 2015) and/or a “Batch
Manhattan” (BM) update rule.

1 Introduction
Deep Neural Networks (DNNs) have achieved remarkable
performance in many domains (Krizhevsky, Sutskever, and
Hinton 2012; Abdel-Hamid et al. 2012; Hinton et al. 2012;
Mikolov et al. 2013; Taigman et al. 2014; Graves, Wayne,
and Danihelka 2014). The simple gradient backpropaga-
tion (BP) algorithm has been the essential “learning engine”
powering most of this work.

Deep neural networks are universal function approxima-
tors (Hornik, Stinchcombe, and White 1989). Thus it is not
surprising that solutions to real-world problems exist within
their configuration space. Rather, the real surprise is that
such configurations can actually be discovered by gradient
backpropagation.

The human brain may also be some form of DNN. Since
BP is the most effective known method of adapting DNN
parameters to large datasets, it becomes a priority to answer:
could the brain somehow be implementing BP? Or some ap-
proximation to it?

Copyright c⃝ 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For most of the past three decades since the invention
of BP, it was generally believed that it could not be im-
plemented by the brain (Crick 1989; Mazzoni, Andersen,
and Jordan 1991; O’Reilly 1996; Chinta and Tweed 2012;
Bengio et al. 2015). BP seems to have three biologically im-
plausible requirements: (1) feedback weights must be the
same as feedforward weights (2) forward and backward
passes require different computations, and (3) error gradi-
ents must somehow be stored separately from activations.

One biologically plausible way to satisfy requirements (2)
and (3) is to posit a distinct “error network” with the same
topology as the main (forward) network but used only for
backpropagation of error signals. The main problem with
such a model is that it makes requirement (1) implausible.
There is no known biological way for the error network to
know precisely the weights of the original network. This is
known as the “weight transport problem” (Grossberg 1987).
In this work we call it the “weight symmetry problem”. It is
arguably the crux of BP’s biological implausibility.

In this report, we systematically relax BP’s weight sym-
metry requirement by manipulating the feedback weights.
We find that some natural and biologically plausible
schemes along these lines lead to exploding or vanishing
gradients and render learning impossible. However, useful
learning is restored if a simple and indeed more biologi-
cally plausible rule called Batch Manhattan (BM) is used
to compute the weight updates. Another technique, called
Batch Normalization (BN) (Ioffe and Szegedy 2015), is also
shown effective. When combined together, these two tech-
niques seem complementary and significantly improve the
performance of our asymmetric version of backpropagation.

The results are somewhat surprising: if the aforemen-
tioned BM and/or BN operations are applied, the magnitudes
of feedback weights turn out not to be important. A much-
relaxed sign-concordance property is all that is needed to at-
tain comparable performance to mini-batch SGD on a large
number of tasks.

Furthermore, we tried going beyond sign concordant
feedback. We systematically reduced the probability of feed-
forward and feedback weights having the same sign (the sign
concordance probability). We found that the effectiveness of
backpropagation is strongly dependent on high sign concor-
dance probability. That said, completely random and fixed
feedback still outperforms chance e.g., as in the recent work
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While argue about BP biological plausibility (the straw)
but we should first argue about static (the beam) neural models! 
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Where is time? Causality?

BIOLOGICAL PLAUSIBILITY OF 
BACKPROPAGATION

We are mostly missing physical plausibility!

Reframing learning  in time leads to conquer 
higher degree of autonomy and consciousness
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2 Alessandro Betti and Marco Gori

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8

Fig. 1. Forward and backward wave on a ten-level network when the input and the
supervision is kept constant.

feedback weights can support error backpropagation. However, any interpreta-

tion which neglects the role of time might not fully capture the essence of bio-

logical plausibility. The intriguing marriage between energy-based models with

object functions for supervision that gives rise to Equilibrium Propagation [11]

seems to be better suited to capture the role of time. Based on a full trust on

the tole of temporal evolution, in [1], the authors proposed the formulation of

learning under the framework of laws of nature derived from variational prin-

ciples. This paper springs out from recent studies especially on the problem of

learning visual features [4, 5, 2] and it was also stimulated by a nice analysis on

the interpretation of Newtonian mechanics equations in the variational frame-

work [9].

This paper shows that when looking for laws of learning more than from

learning algorithms, one can clearly see the emergence of the biological plau-

sibility of Backprop, an issue that has been controversial since its spectacular

impact. We claim that the algorithm does represent a sort of degenerate pro-

cess of a natural spatiotemporal di↵usion process that can clearly be understood

when thinking of perceptual tasks, like speech and vision, where signals possess

smooth properties. In those tasks, instead of performing the forward-backward

scheme for any frame, one can properly spread the weight update according to a

di↵usion scheme. While this is quite an obvious remark on parallel computation,

the disclosure of the degenerate di↵usion scheme behind Backprop, sheds light on

its biological plausibility. This is especially important at the light of recent dis-

coveries on the underlining di↵usion process that characterizes neural networks

with any pattern of interconnections, including cyclic links [3]. The learning pro-

cess that emerges in this framework is based on complex di↵usion waves that,

however, is dramatically simplified under the feedforward assumption, where the

propagation is split into forward and backward waves.

FORWARD AND BACKWARD WAVES

BP diffusion is biologically plausible

BP algorithm is NOT biologically plausible
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In oriental folklore 
dragons not only enjoy 
awesome grace and 
b e a u t y , t h e y a r e 
endowed with immense 
wisdom. But in the west 
they are often portrayed 
as ev i l—St . George 
vanquishes a fearsome 
dragon, as does Beowulf
—or, sometimes, friendly
—Puff. 

THE PROGRESS ON WEB SEARCH
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ANY PROBLEM?

• Web dragons 
surveils the treasure

• The secret paradox

• Privacy issues
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GENERATIVE AI: DRAGONS 

EVOLVE … The milk: it is not just
 Web search or  GMail …
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COLLECTIONLESS CHALLENGES

Design Machines which acquire intelligence 
solely by environmental interactions without 

recording the processed information   

U
nder control of public bodies
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Beyond
the spirit of reinforcement learning

environmental interactions
and the need for conscious actions

S3P-2024 - Collectionless AI



Pr
ob

lem
-so

lvi
ng

 

Knowledge and reasoning

Planning 

Uncertain knowledge and reasoning 
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? ?

AI   
According to Norvig-Russell’s textbook

CollectionlessML  



THE CHALLENGES OF  
THE TRANSITION FROM 

AI to AI
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SMELLING THE HISTORY OF COMPUTATION 
from slide rule to smartphone 
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COLLECTIONLESS AI
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FMCAI

Foundation Models: 
Intelligence on the cloud

On board intelligence

Collection-based
Machine Intelligence 

Collectionless-based
Machine Intelligence
•birth
•life
•reproduction
•death 

transfer learning …
evolutionary computation



LLMs: LINGUISTIC ENVIRONMENT

S3P-2024 - Collectionless AI

B2 NARNIAN

The most challenging way of developing NARNIAN agents is that creating
virtual environments in which they can live. In terms of experimental as-
sessments, a distinctive solution proposed in this project is that of creating
those virtual environment by using LLMs. The basic idea is skteched in
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Figure 6: Three agent interacts on a given subject. The scheduling of the communication

is based on a self-confidence index on the sentence that they are expected to generate.

.
Fig. 6, where the dialog of three LLMs is properly handled with the purpose
of generating a virtual environment. As an example, the subject could be
compactly described as “Nuovo Cinema Paradiso” and “follow up discussion
on love for daughter and son”. Depending on the chosen LLM we needn’t
any fine-tuning since the movie is very popular. However, we need to in-
form the agents of the follow up discussion on the specific subject stimulated
by the movie. In addition, we need an appropriate prompting scheme for
creating agents which emphasize di↵erent sides of the subject, which can
be in fact achieved by exposing them to a di↵erent prompt. In Fig. 6 we
show five di↵erent time in which the scheduling of the agents takes place.
We also assume an “educated interaction” which avoids the case of agents
which are talking simultaneously. The scheduling is based on the computa-
tion of a quality index which expresses the self-confidence of a given agent
on the sentence that it is ready to communicate. In Fig. 6 we can see that
at the beginning the LLM3 is the one with highest expected quality, then
the scheduling policy leads to switch to LLM2, LLM1, LLM2, LLM2. In
addition to the case in which switching in the dialogue is based on the choice
of the highest degree of confidence expressed by the agents themselves, solu-
tions will be tested in which switching is managed by another agent acting as
an arbiter. In-context learning solutions [20] will also be investigated. The
generated virtual environments will become of the world where NARNIAN
agents will be massively simulated before their test in the real world.

15



THE MAIN QUESTION

B2 NARNIAN

some results on the minimization of the functional risk with given boundary
conditions. We have in fact early evidence that the problem can be approx-
imated by using Cauchy conditions, which opens the doors to truly on-line
computational schemes. Overall, we propose facing the following challenge:

Learning takes place without accumulation of collections in Nature.
Is it possible to devise collectionless machines to gain intelligent skills
like in nature?

This challenge requires the conception of an optimization process that is
required to take place on-line by fully matching the spirit of the classic cita-
tion by Danish theologian, philosopher, and poet Søren Kierkegaard: “Life
can only be understood backwards; but it must be lived forwards.” Interest-
ingly, in the current dominating approach to Machine Learning computers
can also somewhat “live backwards” due to the accumulation and interaction
with large data collections, which is in fact one of the reasons of the recent
spectacular results obtained by LLMs. From one side, facing this challenge
leads to better understanding the nature of computational processes taking
place in biology. From the other side, facing this challenge leads to develop
AI solutions that go beyond the risks connected with data centralization.
The project faces the proposed challenge by developing a theory of learning
for the conception of a world of intelligent system, referred to as NARNIAN
agents. Tab. 1 sketches the research plan.

WP Time Tasks

1. Foundations 1–2

1. Links with laws of Mechanics

2. Neural prop. by Hamilt. Learn.

3. Gravitational Neural Networks

2. Developmental Learning 1–3

1. Focus of att. and gate driving

2. Energy-driven heuristics

3. Swarm-driven heuristics

3. Consciousness 3–4

1. Lagr. descript. and invariances

2. Evolutionary issues

4. Neural-Symbolic L &R 2–4

1. Latent semantic fields

2. Gradual acquis. of abstraction

3. Logic-based explanations

5. Assessments 2–5

1. Time series predictions

2. Virtual environments

Table 1: Sketch of research plan. The “Time” column indicates allocated the years.

4

Far better an approximate answer to the right question, 
which is often vague, than the exact answer to the wrong 

question, which can always be made precise. 

 – John Tukey
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TOWARDS COLLECTIONLESS AI1 THE BIG PICTURE

1.7 An overall view

Machine
Learning

Environmental
Constraints

point-wise
constraints

Logic con-
straints

Others

Parsimony

Regularization

Symbolic
simplicity

Dropout?

Temporal View Batch-mode

on-line learning

Life-long
learning

Purpose of Life

Classification

Regression

Conversation

1.8 Scholia

1.9 Exercises

15

laws of Nature
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putational law

s independent of biology

teaching & 
focus of attention
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Quality of intelligence: “green deep learning” … focus on efficiency

big data and huge computational resources 
vs intelligent agents that continuously learn in real-world

role of time  (time of physics!)  
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nobody helps your digestion! 

collection-based ML

mostly missing
in collection-based!

CRUCIAL ROLE OF TEACHING 
DEVELOPMENTAL PSYCHOLOGY



On-line learning algorithms typically regards 
time as an iteration index in the function 
optimization (with the dream of batch-mode)

In human cognition, time is interwound with 
focussing of attention and active actionss

focusing of attention and teaching involves 
computational issues, regardless of the “body”!

TIME IS NOT JUST AN ITERATION INDEX!



TIME  

THE NEW PROTAGONIST OF 
MACHINE LEARNING 
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FUNCTIONAL RISK OVER TIME

… taking the time out makes the problem more difficult!
Nowadays “artificial static formulations” lead to problems more difficult 

than what we directly find in nature

64 CHAPTER 2 Learning Principles

where ∥u∥p := p

√∑d
i=1 u

p
i . It satisfies the symmetry V (x, y, f ) = v(x, f, y) and

is translation independent with respect to the pair (y, f (x)). Basically, it is a special
case of the class of loss defined by V (x, y, f ) = γ (y − f ), where the loss only
depends on the difference y−f . The value p = 2, which restores the quadratic loss, is
not the only interesting one; the cases p = 1 and p = ∞ also give rise to remarkable
properties.5 High values of p return a nearly null loss whenever |y−f (x)| < 1; in the
extreme case, as p → ∞ the loss returns maxj |yj − fj (x)|. Loss functions defined
according to Eq. (2.1.7) implement the principle that, unless f (x) = y, an error is
reported. Sometimes this is not very good: One might be happy with reporting error
only when the prediction is outside a certain margin. This arises naturally from the
extension of (2.1.4). Let us restrict to single output regressors; we can symmetrize
the hinge function by choosing

V (x, y, f ) = (|y − f (x)| − ϵ)+ (2.1.8)

that is referred to as the bathtub loss. The extension to multiclass domains is proposed
in Exercise 9.

Expected and
empirical risk.

So far we have discussed how to return a loss when the machine takes a deci-
sion or make a prediction that is affected by an error. Since the process of supervised
learning takes place on a collection of supervised examples, it is clear that for the
agent to perform the learning task satisfactorily, the error over all the training set
must be kept small. Suppose the learning environment can be modeled by the prob-
ability distribution P(x, y) that is related to the correspondent density p(x, y) by
dP (x, y) = p(x, y)dxdy. Once f is defined, the random variables X and Y generate
the random variable V, whose instances are the values of the loss function V (x, y, f ).
The expected behavior of the agent turns out to be characterized by the minimization
of

E(f ) = EX,Y V =
∫

X ×Y

V (x, y, f )dP (x, y), (2.1.9)

which is the expected value of V. This is the expected risk, which is also referred to as
the functional or structural risk. Unfortunately, the minimization of E(·) is generally
hard, since P(x, y) is not explicitly given.

P(x, y) is a truly
joint distribution!

A comment is in order when considering the distribution P(x, y) that has a sig-
nificant impact on the way regression and classification problems are modeled. In
both cases the patterns exhibit an inherent randomness that is characterized by the
random variable X. In classification, one can also think of the supervisor as an oracle
that makes no mistakes during the decision process. In this extreme case, random-
ness is reduced to X since it is possible to express the supervision deterministically.
Of course, a more practical view of the supervision process suggests that errors are

5Notice that loss function (2.1.7) can also be used for classification. However, as it will be seen, there
are a number of arguments that led to prefer the previously indicated loss functions.

Z T
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FROM LOSS TO LAGRANGIAN

64 CHAPTER 2 Learning Principles
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dt L(x(t), w(t), u(t))

approximation over “big data collections”

approximation over  the “lifespan”
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dt L(x(t), w(t), u(t))

objective functions
value function cost to go
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Least Action in Mechanics 

… thinking of 
Least Action in Cognition: 
a pre-algorithmic view of (machine) learning

From Feynman Lectures 

TIME IS THE PROTAGONIST OF  PHYSICS 
Could it be in learning, too?
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Stationarity of Action 
variation

known boundaries … or transversality conditions
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Stationarity of Action  (con’t)

Fundamental Lemma of variational calculus

Euler-Lagrange equations



428 CHAPTER 6 Learning and Reasoning With Constraints

Table 6.3 Links between the natural learning theory and classical mechanics.

Natural Learning Theory ! Mechan-
ics

Remarks

wi ! qi Weights are interpreted as generalized coor-
dinates.

ẇi ! q̇i Weights variations are interpreted as gener-
alized velocities.

υi ! pi The conjugate momentum to the weights is
defined by using the machinery of Legendre
transforms.

A(w) ! S(q) The cognitive action is the dual of the action
in mechanics.

F(t, w, ẇ) ! L(t, q, q̇) The Lagrangian F is associated with the
classic Lagrangian L in mechanics.

H(t, w, υ) ! H(t, q, p) When using w and υ, we can define the
Hamiltonian, just like in mechanics.

As it will be shown later, these conditions can be guaranteed if we assume that long-life learn-
ing undergoes a day–night rhythm scheme. Such a scheme follows the corresponding human
metaphor: The perceptual information is only provided during the day, while the agent “sleeps”
at night without receiving any perceptual information, which is translated into the condition
ẋ = 0. We assume to undergo a long-life learning scheme which repeats days of life according
to the above rhythmic scheme. Before discussing this assumption, we start noticing that in per-
ceptual tasks, the day-night rhythm doesn’t alter the semantics that can be captured from the
environmental information flow. Hence, just like an uninterrupted flow, this rhythmic interac-
tion keeps the semantics, but favors the simplicity and the effectiveness of learning processes,
since the lack of night stimulus facilitates the verification of the condition (6.5.162) on the
right border. Unlike an uninterrupted flow, the day–night rhythm allows us small weight up-
dates from consecutive days. Hence, if w(tκ ) is the weight vector at the end of day κ , the
day after, the weight w(tκ+1) ≃ w(tκ ), which facilitates the approximation of the condition
ẇ(t = tκ+2) = 0. Now let’s write the equations of the weights wi(t) of the synaptic connec-
tions.

If we pose D = d/dt then the Euler–Lagrange equation DF ′
wi

−F ′
i = 0 becomes

miẅi + ζ̇

ζ
ẇi + V ′

wi
= 0. (6.5.163)

As we can see, the developmental function ζ , which is always positive, strongly af-
fects the neurodynamics. In order to start understanding its effect, suppose that there
is no focus of attention, that is, dϕ(ẋ(t))/dt := ϕ̇ = 0. In this case the above equation
reduces to

miẅi + ρ̇

ρ
ẇi + V ′

wi
= miẅi + θẇi + V ′

wi
= 0, (6.5.164)

NATURAL LAWS OF COGNITION: A Pre-Algorithmic Step
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Learning and Optimality

Principle of  Causal Optimality:  An optimal causal policy has 
the property that, at a given time, the past decisions cannot be 
changed. The decisions are based on the current state and the 
information available at that time.

Principle of Optimality: An optimal policy has the property 
that whatever the initial state and initial decision are, the 
remaining decisions must constitute an optimal policy with 
regard to the state resulting from the first decision. (See 
Bellman, 1957, Chap. III.3.)
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LINKS WITH MECHANICS 
Causal Optimization and Dissipation

B2 NARNIAN

1. FOUNDATIONS
We aim at covering the foundations of learning in the temporal domain by
exploring the links with classic laws established in Theoretical Physics by
variational problems. We begin from recently established results at SAILab
on dynamical models in the form of recurrent neural networks where the
propagation mechanisms are fully local in both space and time. The major
purpose of this WP is to establish the foundations of a new neural propa-
gation scheme that completely replace the role of classic Backpropagation.

1.1 Links with Laws of Mechanics
We start by noting an intriguing connection between the formulation of
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Figure 1: Neural model, Lagrangian, and the two coordinates of learning. First,
the theory of Optimal Control drives the velocity �ij of the weights, thus resembling
gradient-descent learning policies. Second, the dissipative weights � control the overall
learning process by gating mechanisms which takes place on both the network and the
Lagrangian..

Based on the above premises we consider a dynamical system defined by
a continuous-time recurrent neural network, where some of the neurons are
reserved to model the interactions with the environment, whereas others are
hidden. Basically, the set of vertexes V = I �H�O contains input I, hidden H,
and output units O. It turns out that for input nodes, i � I, the corresponding
neuron returns a value ⇠i that corresponds with the input ui. Likewise, for
output units, o � O, the value ⇠o encodes an action that is expected to optimize
the agent behavior. Finally, other units ⇠h, that are characterized by h � H, are
hidden. We also introduce V̄ := H�O which represents the set of non-degenerate
neurons. This set is useful also for defining the architecture of the recurrent
network which is characterized by the graph G = (V, A), where A � V � V̄ is
the set of arcs which connect non-degenerate units. The neural system dynamics
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L(x, v) =
1

2
mv

2 + �V (x)

loss termregularization term

Figure 1: Lagrangian functions for Learning and Mechanics. In the case of learning, the

Lagrangian is based on the direct graph which characterizes a recurrent net.

learning over time and that of the principle of least action [11] in Mechan-
ics. Fig. 1 illustrates the relationships between the two Lagrangians: The
potential of Mechanics corresponds to the loss function of learning, while
the kinetic energy is analogous to the regularization term. In Mechanics,
we study the motion of particles, while in learning, we study the motion of
synaptic connections. In Theoretical Physics the motion of the particles can
be formulated as the minimization of the action

(
ẋ(s) = v(s)

S =
R t
0

⇣
1
2mv

2(s) + �V (x(s)
⌘
ds,

(1)

where � = �1. Interestingly, a well-posed formulation of learning tasks
assumes that the correspondent � term in the Lagrangian (see Fig. 1) be
positive. It is also worth mentioning that though the optimization of the

5


